Nuprl Lemma : gcd_sat_gcd_p

a,b:ℤ.  GCD(a;b;gcd(a;b))


Proof




Definitions occuring in Statement :  gcd_p: GCD(a;b;y) gcd: gcd(a;b) all: x:A. B[x] int:
Definitions unfolded in proof :  all: x:A. B[x] uall: [x:A]. B[x] member: t ∈ T int_seg: {i..j-} lelt: i ≤ j < k and: P ∧ Q le: A ≤ B uimplies: supposing a not: ¬A implies:  Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False top: Top prop: decidable: Dec(P) or: P ∨ Q subtype_rel: A ⊆B so_lambda: λ2x.t[x] so_apply: x[s] guard: {T} sq_type: SQType(T) nat: ge: i ≥  gcd: gcd(a;b) bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) ifthenelse: if then else fi  bfalse: ff iff: ⇐⇒ Q rev_implies:  Q less_than: a < b less_than': less_than'(a;b) true: True squash: T bnot: ¬bb assert: b int_nzero: -o nequal: a ≠ b ∈  subtract: m
Lemmas referenced :  int_seg_properties full-omega-unsat intformand_wf intformless_wf itermVar_wf itermConstant_wf intformle_wf istype-int int_formula_prop_and_lemma istype-void int_formula_prop_less_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_wf int_seg_wf decidable__equal_int subtract_wf subtype_base_sq set_subtype_base int_subtype_base intformnot_wf intformeq_wf itermSubtract_wf int_formula_prop_not_lemma int_formula_prop_eq_lemma int_term_value_subtract_lemma decidable__le decidable__lt istype-le istype-less_than subtype_rel_self absval_wf le_wf gcd_p_wf gcd_wf primrec-wf2 nat_properties itermAdd_wf int_term_value_add_lemma istype-nat eq_int_wf equal-wf-base bool_wf assert_wf gcd_p_zero bnot_wf not_wf istype-assert uiff_transitivity eqtt_to_assert assert_of_eq_int iff_transitivity iff_weakening_uiff eqff_to_assert assert_of_bnot absval_unfold lt_int_wf assert_of_lt_int istype-top bool_cases_sqequal bool_subtype_base assert-bnot less_than_wf itermMinus_wf int_term_value_minus_lemma rem_bounds_absval nequal_wf remainder_wfa divide_wfa squash_wf true_wf rem_to_div iff_weakening_equal gcd_p_shift add-associates minus-one-mul mul-commutes add-commutes add-mul-special zero-mul add-zero gcd_p_sym
Rules used in proof :  cut sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :lambdaFormation_alt,  thin introduction extract_by_obid sqequalHypSubstitution isectElimination setElimination rename productElimination hypothesis hypothesisEquality natural_numberEquality independent_isectElimination approximateComputation independent_functionElimination Error :dependent_pairFormation_alt,  Error :lambdaEquality_alt,  int_eqEquality dependent_functionElimination Error :isect_memberEquality_alt,  voidElimination sqequalRule independent_pairFormation Error :universeIsType,  unionElimination applyEquality instantiate because_Cache equalityTransitivity equalitySymmetry applyLambdaEquality Error :dependent_set_memberEquality_alt,  Error :productIsType,  hypothesis_subsumption Error :functionIsType,  functionEquality intEquality Error :inhabitedIsType,  Error :setIsType,  addEquality baseApply closedConclusion baseClosed cumulativity Error :equalityIstype,  sqequalBase equalityElimination minusEquality lessCases Error :isect_memberFormation_alt,  axiomSqEquality Error :isectIsTypeImplies,  imageMemberEquality imageElimination promote_hyp multiplyEquality universeEquality

Latex:
\mforall{}a,b:\mBbbZ{}.    GCD(a;b;gcd(a;b))



Date html generated: 2019_06_20-PM-02_21_54
Last ObjectModification: 2019_03_06-AM-11_06_20

Theory : num_thy_1


Home Index