Nuprl Lemma : gcd_sat_gcd_p
∀a,b:ℤ.  GCD(a;b;gcd(a;b))
Proof
Definitions occuring in Statement : 
gcd_p: GCD(a;b;y), 
gcd: gcd(a;b), 
all: ∀x:A. B[x], 
int: ℤ
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
int_seg: {i..j-}, 
lelt: i ≤ j < k, 
and: P ∧ Q, 
le: A ≤ B, 
uimplies: b supposing a, 
not: ¬A, 
implies: P ⇒ Q, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
false: False, 
top: Top, 
prop: ℙ, 
decidable: Dec(P), 
or: P ∨ Q, 
subtype_rel: A ⊆r B, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
guard: {T}, 
sq_type: SQType(T), 
nat: ℕ, 
ge: i ≥ j , 
gcd: gcd(a;b), 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
uiff: uiff(P;Q), 
ifthenelse: if b then t else f fi , 
bfalse: ff, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
less_than: a < b, 
less_than': less_than'(a;b), 
true: True, 
squash: ↓T, 
bnot: ¬bb, 
assert: ↑b, 
int_nzero: ℤ-o, 
nequal: a ≠ b ∈ T , 
subtract: n - m
Lemmas referenced : 
int_seg_properties, 
full-omega-unsat, 
intformand_wf, 
intformless_wf, 
itermVar_wf, 
itermConstant_wf, 
intformle_wf, 
istype-int, 
int_formula_prop_and_lemma, 
istype-void, 
int_formula_prop_less_lemma, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_wf, 
int_seg_wf, 
decidable__equal_int, 
subtract_wf, 
subtype_base_sq, 
set_subtype_base, 
int_subtype_base, 
intformnot_wf, 
intformeq_wf, 
itermSubtract_wf, 
int_formula_prop_not_lemma, 
int_formula_prop_eq_lemma, 
int_term_value_subtract_lemma, 
decidable__le, 
decidable__lt, 
istype-le, 
istype-less_than, 
subtype_rel_self, 
absval_wf, 
le_wf, 
gcd_p_wf, 
gcd_wf, 
primrec-wf2, 
nat_properties, 
itermAdd_wf, 
int_term_value_add_lemma, 
istype-nat, 
eq_int_wf, 
equal-wf-base, 
bool_wf, 
assert_wf, 
gcd_p_zero, 
bnot_wf, 
not_wf, 
istype-assert, 
uiff_transitivity, 
eqtt_to_assert, 
assert_of_eq_int, 
iff_transitivity, 
iff_weakening_uiff, 
eqff_to_assert, 
assert_of_bnot, 
absval_unfold, 
lt_int_wf, 
assert_of_lt_int, 
istype-top, 
bool_cases_sqequal, 
bool_subtype_base, 
assert-bnot, 
less_than_wf, 
itermMinus_wf, 
int_term_value_minus_lemma, 
rem_bounds_absval, 
nequal_wf, 
remainder_wfa, 
divide_wfa, 
squash_wf, 
true_wf, 
rem_to_div, 
iff_weakening_equal, 
gcd_p_shift, 
add-associates, 
minus-one-mul, 
mul-commutes, 
add-commutes, 
add-mul-special, 
zero-mul, 
add-zero, 
gcd_p_sym
Rules used in proof : 
cut, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :lambdaFormation_alt, 
thin, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
setElimination, 
rename, 
productElimination, 
hypothesis, 
hypothesisEquality, 
natural_numberEquality, 
independent_isectElimination, 
approximateComputation, 
independent_functionElimination, 
Error :dependent_pairFormation_alt, 
Error :lambdaEquality_alt, 
int_eqEquality, 
dependent_functionElimination, 
Error :isect_memberEquality_alt, 
voidElimination, 
sqequalRule, 
independent_pairFormation, 
Error :universeIsType, 
unionElimination, 
applyEquality, 
instantiate, 
because_Cache, 
equalityTransitivity, 
equalitySymmetry, 
applyLambdaEquality, 
Error :dependent_set_memberEquality_alt, 
Error :productIsType, 
hypothesis_subsumption, 
Error :functionIsType, 
functionEquality, 
intEquality, 
Error :inhabitedIsType, 
Error :setIsType, 
addEquality, 
baseApply, 
closedConclusion, 
baseClosed, 
cumulativity, 
Error :equalityIstype, 
sqequalBase, 
equalityElimination, 
minusEquality, 
lessCases, 
Error :isect_memberFormation_alt, 
axiomSqEquality, 
Error :isectIsTypeImplies, 
imageMemberEquality, 
imageElimination, 
promote_hyp, 
multiplyEquality, 
universeEquality
Latex:
\mforall{}a,b:\mBbbZ{}.    GCD(a;b;gcd(a;b))
Date html generated:
2019_06_20-PM-02_21_54
Last ObjectModification:
2019_03_06-AM-11_06_20
Theory : num_thy_1
Home
Index