Nuprl Lemma : urec-is-least-fixedpoint

[F:Type ⟶ Type]. ∀T:Type. urec(F) ⊆supposing T ≡ supposing Monotone(T.F T)


Proof




Definitions occuring in Statement :  urec: urec(F) type-monotone: Monotone(T.F[T]) ext-eq: A ≡ B uimplies: supposing a subtype_rel: A ⊆B uall: [x:A]. B[x] all: x:A. B[x] apply: a function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a all: x:A. B[x] subtype_rel: A ⊆B urec: urec(F) tunion: x:A.B[x] pi2: snd(t) nat: implies:  Q false: False ge: i ≥  satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] not: ¬A top: Top and: P ∧ Q prop: decidable: Dec(P) or: P ∨ Q so_lambda: λ2x.t[x] so_apply: x[s] squash: T true: True guard: {T} iff: ⇐⇒ Q rev_implies:  Q type-monotone: Monotone(T.F[T])
Lemmas referenced :  fun_exp_wf subtype_rel_weakening subtype_rel_transitivity iff_weakening_equal true_wf squash_wf subtype_rel_wf type-monotone_wf ext-eq_wf urec_wf subtract-add-cancel le_wf fun_exp_apply_add1 int_term_value_subtract_lemma int_formula_prop_not_lemma itermSubtract_wf intformnot_wf subtract_wf decidable__le fun_exp0_lemma less_than_wf ge_wf int_formula_prop_wf int_formula_prop_less_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_and_lemma intformless_wf itermVar_wf itermConstant_wf intformle_wf intformand_wf satisfiable-full-omega-tt nat_properties
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lambdaFormation lambdaEquality sqequalHypSubstitution imageElimination productElimination thin sqequalRule hypothesisEquality applyEquality lemma_by_obid isectElimination hypothesis setElimination rename intWeakElimination natural_numberEquality independent_isectElimination dependent_pairFormation int_eqEquality intEquality dependent_functionElimination isect_memberEquality voidElimination voidEquality independent_pairFormation computeAll independent_functionElimination axiomEquality unionElimination instantiate because_Cache dependent_set_memberEquality universeEquality equalityTransitivity equalitySymmetry functionEquality imageMemberEquality baseClosed

Latex:
\mforall{}[F:Type  {}\mrightarrow{}  Type].  \mforall{}T:Type.  urec(F)  \msubseteq{}r  T  supposing  F  T  \mequiv{}  T  supposing  Monotone(T.F  T)



Date html generated: 2016_05_15-PM-06_54_53
Last ObjectModification: 2016_01_16-AM-09_48_47

Theory : general


Home Index