Nuprl Lemma : flattice-order-append
∀X:Type. ∀a1,b1,as,bs:(X + X) List List.
  (flattice-order(X;a1;b1) 
⇒ flattice-order(X;as;bs) 
⇒ flattice-order(X;a1 @ as;b1 @ bs))
Proof
Definitions occuring in Statement : 
flattice-order: flattice-order(X;as;bs)
, 
append: as @ bs
, 
list: T List
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
union: left + right
, 
universe: Type
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
flattice-order: flattice-order(X;as;bs)
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
so_lambda: λ2x.t[x]
, 
prop: ℙ
, 
so_apply: x[s]
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
, 
exists: ∃x:A. B[x]
, 
or: P ∨ Q
, 
guard: {T}
, 
cand: A c∧ B
Lemmas referenced : 
l_all_iff, 
list_wf, 
l_member_wf, 
or_wf, 
l_exists_wf, 
equal_wf, 
flip-union_wf, 
l_contains_wf, 
append_wf, 
l_exists_iff, 
exists_wf, 
member_append, 
all_wf, 
flattice-order_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
sqequalHypSubstitution, 
cut, 
introduction, 
extract_by_obid, 
isectElimination, 
thin, 
unionEquality, 
cumulativity, 
hypothesisEquality, 
hypothesis, 
dependent_functionElimination, 
sqequalRule, 
lambdaEquality, 
setElimination, 
rename, 
because_Cache, 
setEquality, 
productElimination, 
independent_functionElimination, 
allFunctionality, 
addLevel, 
orFunctionality, 
productEquality, 
promote_hyp, 
impliesFunctionality, 
existsFunctionality, 
independent_pairFormation, 
andLevelFunctionality, 
existsLevelFunctionality, 
functionEquality, 
universeEquality, 
unionElimination, 
inlFormation, 
inrFormation, 
dependent_pairFormation
Latex:
\mforall{}X:Type.  \mforall{}a1,b1,as,bs:(X  +  X)  List  List.
    (flattice-order(X;a1;b1)  {}\mRightarrow{}  flattice-order(X;as;bs)  {}\mRightarrow{}  flattice-order(X;a1  @  as;b1  @  bs))
Date html generated:
2020_05_20-AM-08_59_26
Last ObjectModification:
2017_01_24-AM-10_50_52
Theory : lattices
Home
Index