Nuprl Lemma : flattice-order-append

X:Type. ∀a1,b1,as,bs:(X X) List List.
  (flattice-order(X;a1;b1)  flattice-order(X;as;bs)  flattice-order(X;a1 as;b1 bs))


Proof




Definitions occuring in Statement :  flattice-order: flattice-order(X;as;bs) append: as bs list: List all: x:A. B[x] implies:  Q union: left right universe: Type
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q flattice-order: flattice-order(X;as;bs) uall: [x:A]. B[x] member: t ∈ T so_lambda: λ2x.t[x] prop: so_apply: x[s] iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q exists: x:A. B[x] or: P ∨ Q guard: {T} cand: c∧ B
Lemmas referenced :  l_all_iff list_wf l_member_wf or_wf l_exists_wf equal_wf flip-union_wf l_contains_wf append_wf l_exists_iff exists_wf member_append all_wf flattice-order_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation sqequalHypSubstitution cut introduction extract_by_obid isectElimination thin unionEquality cumulativity hypothesisEquality hypothesis dependent_functionElimination sqequalRule lambdaEquality setElimination rename because_Cache setEquality productElimination independent_functionElimination allFunctionality addLevel orFunctionality productEquality promote_hyp impliesFunctionality existsFunctionality independent_pairFormation andLevelFunctionality existsLevelFunctionality functionEquality universeEquality unionElimination inlFormation inrFormation dependent_pairFormation

Latex:
\mforall{}X:Type.  \mforall{}a1,b1,as,bs:(X  +  X)  List  List.
    (flattice-order(X;a1;b1)  {}\mRightarrow{}  flattice-order(X;as;bs)  {}\mRightarrow{}  flattice-order(X;a1  @  as;b1  @  bs))



Date html generated: 2020_05_20-AM-08_59_26
Last ObjectModification: 2017_01_24-AM-10_50_52

Theory : lattices


Home Index