Nuprl Lemma : lattice-axioms-iff-order

l:LatticeStructure
  (∃R:Point(l) ⟶ Point(l) ⟶ ℙ
    (((∀[a,b:Point(l)].  least-upper-bound(Point(l);x,y.R[x;y];a;b;a ∨ b))
    ∧ (∀[a,b:Point(l)].  greatest-lower-bound(Point(l);x,y.R[x;y];a;b;a ∧ b)))
    ∧ Order(Point(l);x,y.R[x;y]))
  ⇐⇒ lattice-axioms(l))


Proof




Definitions occuring in Statement :  lattice-axioms: lattice-axioms(l) lattice-join: a ∨ b lattice-meet: a ∧ b lattice-point: Point(l) lattice-structure: LatticeStructure greatest-lower-bound: greatest-lower-bound(T;x,y.R[x; y];a;b;c) least-upper-bound: least-upper-bound(T;x,y.R[x; y];a;b;c) order: Order(T;x,y.R[x; y]) uall: [x:A]. B[x] prop: so_apply: x[s1;s2] all: x:A. B[x] exists: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q function: x:A ⟶ B[x]
Definitions unfolded in proof :  all: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q implies:  Q uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a prop: subtype_rel: A ⊆B so_lambda: λ2x.t[x] so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] so_apply: x[s] rev_implies:  Q cand: c∧ B lattice: Lattice least-upper-bound: least-upper-bound(T;x,y.R[x; y];a;b;c) lattice-le: a ≤ b greatest-lower-bound: greatest-lower-bound(T;x,y.R[x; y];a;b;c) exists: x:A. B[x]
Lemmas referenced :  lattice-axioms-from-order exists_wf lattice-point_wf uall_wf least-upper-bound_wf lattice-join_wf greatest-lower-bound_wf lattice-meet_wf order_wf lattice-axioms_wf lattice-structure_wf lattice-le_wf lattice-join-is-lub lattice-meet-is-glb lattice-le-order
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation independent_pairFormation cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality independent_isectElimination hypothesis instantiate functionEquality applyEquality lambdaEquality cumulativity universeEquality sqequalRule because_Cache productEquality isect_memberFormation introduction dependent_functionElimination dependent_set_memberEquality productElimination independent_pairEquality axiomEquality isect_memberEquality rename dependent_pairEquality

Latex:
\mforall{}l:LatticeStructure
    (\mexists{}R:Point(l)  {}\mrightarrow{}  Point(l)  {}\mrightarrow{}  \mBbbP{}
        (((\mforall{}[a,b:Point(l)].    least-upper-bound(Point(l);x,y.R[x;y];a;b;a  \mvee{}  b))
        \mwedge{}  (\mforall{}[a,b:Point(l)].    greatest-lower-bound(Point(l);x,y.R[x;y];a;b;a  \mwedge{}  b)))
        \mwedge{}  Order(Point(l);x,y.R[x;y]))
    \mLeftarrow{}{}\mRightarrow{}  lattice-axioms(l))



Date html generated: 2020_05_20-AM-08_25_44
Last ObjectModification: 2015_12_28-PM-02_03_42

Theory : lattices


Home Index