Nuprl Lemma : filter_is_interleaving

[T:Type]. ∀P:T ⟶ 𝔹. ∀L:T List.  interleaving(T;filter(λx.(¬b(P x));L);filter(P;L);L)


Proof




Definitions occuring in Statement :  interleaving: interleaving(T;L1;L2;L) filter: filter(P;l) list: List bnot: ¬bb bool: 𝔹 uall: [x:A]. B[x] all: x:A. B[x] apply: a lambda: λx.A[x] function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] member: t ∈ T int_seg: {i..j-} uimplies: supposing a guard: {T} lelt: i ≤ j < k and: P ∧ Q decidable: Dec(P) or: P ∨ Q not: ¬A implies:  Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False top: Top prop: less_than: a < b squash: T iff: ⇐⇒ Q l_all: (∀x∈L.P[x]) so_apply: x[s] interleaving_occurence: interleaving_occurence(T;L1;L2;L;f1;f2)
Lemmas referenced :  interleaving_split assert_wf select_wf int_seg_properties length_wf decidable__le full-omega-unsat intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf istype-int int_formula_prop_and_lemma istype-void int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf decidable__lt intformless_wf int_formula_prop_less_lemma int_seg_wf decidable__assert list_wf istype-universe bool_wf occurence_implies_interleaving interleaving_as_filter_2 interleaving_symmetry filter_trivial2 nil_wf filter_is_nil not_wf interleaving_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt lambdaFormation_alt cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality dependent_functionElimination lambdaEquality_alt applyEquality setElimination rename because_Cache hypothesis independent_isectElimination natural_numberEquality productElimination unionElimination approximateComputation independent_functionElimination dependent_pairFormation_alt int_eqEquality isect_memberEquality_alt voidElimination sqequalRule independent_pairFormation universeIsType imageElimination functionIsType universeEquality equalitySymmetry hyp_replacement applyLambdaEquality equalityTransitivity

Latex:
\mforall{}[T:Type].  \mforall{}P:T  {}\mrightarrow{}  \mBbbB{}.  \mforall{}L:T  List.    interleaving(T;filter(\mlambda{}x.(\mneg{}\msubb{}(P  x));L);filter(P;L);L)



Date html generated: 2019_10_15-AM-10_57_29
Last ObjectModification: 2018_10_09-AM-09_58_35

Theory : list!


Home Index