Nuprl Lemma : filter_is_interleaving
∀[T:Type]. ∀P:T ⟶ 𝔹. ∀L:T List.  interleaving(T;filter(λx.(¬b(P x));L);filter(P;L);L)
Proof
Definitions occuring in Statement : 
interleaving: interleaving(T;L1;L2;L)
, 
filter: filter(P;l)
, 
list: T List
, 
bnot: ¬bb
, 
bool: 𝔹
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
apply: f a
, 
lambda: λx.A[x]
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
int_seg: {i..j-}
, 
uimplies: b supposing a
, 
guard: {T}
, 
lelt: i ≤ j < k
, 
and: P ∧ Q
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
top: Top
, 
prop: ℙ
, 
less_than: a < b
, 
squash: ↓T
, 
iff: P 
⇐⇒ Q
, 
l_all: (∀x∈L.P[x])
, 
so_apply: x[s]
, 
interleaving_occurence: interleaving_occurence(T;L1;L2;L;f1;f2)
Lemmas referenced : 
interleaving_split, 
assert_wf, 
select_wf, 
int_seg_properties, 
length_wf, 
decidable__le, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
istype-int, 
int_formula_prop_and_lemma, 
istype-void, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
decidable__lt, 
intformless_wf, 
int_formula_prop_less_lemma, 
int_seg_wf, 
decidable__assert, 
list_wf, 
istype-universe, 
bool_wf, 
occurence_implies_interleaving, 
interleaving_as_filter_2, 
interleaving_symmetry, 
filter_trivial2, 
nil_wf, 
filter_is_nil, 
not_wf, 
interleaving_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
lambdaFormation_alt, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
dependent_functionElimination, 
lambdaEquality_alt, 
applyEquality, 
setElimination, 
rename, 
because_Cache, 
hypothesis, 
independent_isectElimination, 
natural_numberEquality, 
productElimination, 
unionElimination, 
approximateComputation, 
independent_functionElimination, 
dependent_pairFormation_alt, 
int_eqEquality, 
isect_memberEquality_alt, 
voidElimination, 
sqequalRule, 
independent_pairFormation, 
universeIsType, 
imageElimination, 
functionIsType, 
universeEquality, 
equalitySymmetry, 
hyp_replacement, 
applyLambdaEquality, 
equalityTransitivity
Latex:
\mforall{}[T:Type].  \mforall{}P:T  {}\mrightarrow{}  \mBbbB{}.  \mforall{}L:T  List.    interleaving(T;filter(\mlambda{}x.(\mneg{}\msubb{}(P  x));L);filter(P;L);L)
Date html generated:
2019_10_15-AM-10_57_29
Last ObjectModification:
2018_10_09-AM-09_58_35
Theory : list!
Home
Index