Nuprl Lemma : interleaving_split

[T:Type]
  ∀L:T List
    ∀[P:ℕ||L|| ⟶ ℙ]
      ((∀x:ℕ||L||. Dec(P x))
       (∃L1,L2:T List
           ∃f1:ℕ||L1|| ⟶ ℕ||L||
            ∃f2:ℕ||L2|| ⟶ ℕ||L||
             (interleaving_occurence(T;L1;L2;L;f1;f2)
             ∧ ((∀i:ℕ||L1||. (P (f1 i))) ∧ (∀i:ℕ||L2||. (P (f2 i)))))
             ∧ (∀i:ℕ||L||
                  (((P i)  (∃j:ℕ||L1||. ((f1 j) i ∈ ℤ))) ∧ ∃j:ℕ||L2||. ((f2 j) i ∈ ℤsupposing ¬(P i))))))


Proof




Definitions occuring in Statement :  interleaving_occurence: interleaving_occurence(T;L1;L2;L;f1;f2) length: ||as|| list: List int_seg: {i..j-} decidable: Dec(P) uimplies: supposing a uall: [x:A]. B[x] prop: all: x:A. B[x] exists: x:A. B[x] not: ¬A implies:  Q and: P ∧ Q apply: a function: x:A ⟶ B[x] natural_number: $n int: universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] implies:  Q member: t ∈ T exists: x:A. B[x] and: P ∧ Q prop: so_lambda: λ2x.t[x] so_apply: x[s] uimplies: supposing a cand: c∧ B subtype_rel: A ⊆B nat: ge: i ≥  decidable: Dec(P) or: P ∨ Q not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) false: False top: Top sq_type: SQType(T) guard: {T} int_seg: {i..j-} lelt: i ≤ j < k sublist_occurence: sublist_occurence(T;L1;L2;f) interleaving_occurence: interleaving_occurence(T;L1;L2;L;f1;f2) true: True label: ...$L... t iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  increasing_split length_wf_nat all_wf int_seg_wf length_wf decidable_wf list_wf range_sublist subtype_base_sq nat_wf set_subtype_base le_wf int_subtype_base nat_properties decidable__equal_int full-omega-unsat intformand_wf intformnot_wf intformeq_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_eq_lemma int_term_value_var_lemma int_formula_prop_wf decidable__le intformle_wf itermConstant_wf int_formula_prop_le_lemma int_term_value_constant_lemma subtype_rel_self interleaving_occurence_wf decidable__lt intformless_wf int_formula_prop_less_lemma lelt_wf not_wf exists_wf equal_wf int_seg_properties disjoint_increasing_onto itermAdd_wf int_term_value_add_lemma iff_weakening_equal
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt lambdaFormation cut introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin isectElimination hypothesisEquality hypothesis independent_functionElimination productElimination natural_numberEquality sqequalRule lambdaEquality applyEquality functionIsType universeIsType universeEquality independent_isectElimination because_Cache dependent_pairFormation instantiate cumulativity intEquality setElimination rename equalityTransitivity equalitySymmetry unionElimination approximateComputation int_eqEquality isect_memberEquality voidElimination voidEquality independent_pairFormation dependent_set_memberEquality functionEquality productEquality functionExtensionality isectEquality promote_hyp lambdaFormation_alt applyLambdaEquality

Latex:
\mforall{}[T:Type]
    \mforall{}L:T  List
        \mforall{}[P:\mBbbN{}||L||  {}\mrightarrow{}  \mBbbP{}]
            ((\mforall{}x:\mBbbN{}||L||.  Dec(P  x))
            {}\mRightarrow{}  (\mexists{}L1,L2:T  List
                      \mexists{}f1:\mBbbN{}||L1||  {}\mrightarrow{}  \mBbbN{}||L||
                        \mexists{}f2:\mBbbN{}||L2||  {}\mrightarrow{}  \mBbbN{}||L||
                          (interleaving\_occurence(T;L1;L2;L;f1;f2)
                          \mwedge{}  ((\mforall{}i:\mBbbN{}||L1||.  (P  (f1  i)))  \mwedge{}  (\mforall{}i:\mBbbN{}||L2||.  (\mneg{}(P  (f2  i)))))
                          \mwedge{}  (\mforall{}i:\mBbbN{}||L||
                                    (((P  i)  {}\mRightarrow{}  (\mexists{}j:\mBbbN{}||L1||.  ((f1  j)  =  i)))
                                    \mwedge{}  \mexists{}j:\mBbbN{}||L2||.  ((f2  j)  =  i)  supposing  \mneg{}(P  i))))))



Date html generated: 2019_10_15-AM-10_57_17
Last ObjectModification: 2018_09_27-AM-09_57_58

Theory : list!


Home Index