Nuprl Lemma : range_sublist

[T:Type]
  ∀L:T List. ∀n:ℕ. ∀f:ℕn ⟶ ℕ||L||.
    ∃L1:T List. ((||L1|| n ∈ ℤc∧ sublist_occurence(T;L1;L;f)) supposing increasing(f;n)


Proof




Definitions occuring in Statement :  sublist_occurence: sublist_occurence(T;L1;L2;f) length: ||as|| list: List increasing: increasing(f;k) int_seg: {i..j-} nat: uimplies: supposing a uall: [x:A]. B[x] cand: c∧ B all: x:A. B[x] exists: x:A. B[x] function: x:A ⟶ B[x] natural_number: $n int: universe: Type equal: t ∈ T
Definitions unfolded in proof :  sublist_occurence: sublist_occurence(T;L1;L2;f) uall: [x:A]. B[x] all: x:A. B[x] member: t ∈ T so_lambda: λ2x.t[x] nat: uimplies: supposing a subtype_rel: A ⊆B prop: cand: c∧ B and: P ∧ Q so_apply: x[s] le: A ≤ B less_than': less_than'(a;b) false: False not: ¬A implies:  Q ge: i ≥  decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] top: Top int_seg: {i..j-} guard: {T} lelt: i ≤ j < k increasing: increasing(f;k) less_than: a < b uiff: uiff(P;Q) subtract: m sq_type: SQType(T) select: L[n] nil: [] it: so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] squash: T label: ...$L... t true: True iff: ⇐⇒ Q rev_implies:  Q cons: [a b] fadd: fadd(f;g)
Lemmas referenced :  list_induction all_wf nat_wf int_seg_wf length_wf isect_wf increasing_wf exists_wf list_wf equal_wf length_wf_nat subtype_rel_dep_function int_seg_subtype false_wf nat_properties decidable__le satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf itermVar_wf intformeq_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_var_lemma int_formula_prop_eq_lemma int_formula_prop_wf select_wf int_seg_properties itermConstant_wf int_term_value_constant_lemma decidable__lt intformless_wf int_formula_prop_less_lemma lelt_wf non_neg_length member-less_than length_of_nil_lemma itermSubtract_wf int_term_value_subtract_lemma add-member-int_seg2 subtract_wf nil_wf length_of_cons_lemma cons_wf decidable__equal_int subtype_base_sq set_subtype_base le_wf int_subtype_base stuck-spread base_wf equal-wf-T-base squash_wf true_wf subtype_rel_self iff_weakening_equal increasing_lower_bound itermAdd_wf int_term_value_add_lemma select-cons-hd select_cons_tl subtract-add-cancel fadd_increasing const_nondecreasing less_than_wf add-commutes
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation lambdaFormation cut thin introduction extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality lambdaEquality hypothesis functionEquality natural_numberEquality setElimination rename because_Cache cumulativity functionExtensionality applyEquality productEquality intEquality independent_isectElimination equalityTransitivity equalitySymmetry independent_pairFormation dependent_functionElimination unionElimination dependent_pairFormation int_eqEquality isect_memberEquality voidElimination voidEquality computeAll productElimination dependent_set_memberEquality applyLambdaEquality independent_functionElimination universeEquality instantiate baseClosed imageElimination imageMemberEquality addEquality minusEquality hyp_replacement

Latex:
\mforall{}[T:Type]
    \mforall{}L:T  List.  \mforall{}n:\mBbbN{}.  \mforall{}f:\mBbbN{}n  {}\mrightarrow{}  \mBbbN{}||L||.
        \mexists{}L1:T  List.  ((||L1||  =  n)  c\mwedge{}  sublist\_occurence(T;L1;L;f))  supposing  increasing(f;n)



Date html generated: 2017_10_01-AM-08_35_32
Last ObjectModification: 2017_07_26-PM-04_25_51

Theory : list!


Home Index