Nuprl Lemma : range_sublist
∀[T:Type]
  ∀L:T List. ∀n:ℕ. ∀f:ℕn ⟶ ℕ||L||.
    ∃L1:T List. ((||L1|| = n ∈ ℤ) c∧ sublist_occurence(T;L1;L;f)) supposing increasing(f;n)
Proof
Definitions occuring in Statement : 
sublist_occurence: sublist_occurence(T;L1;L2;f)
, 
length: ||as||
, 
list: T List
, 
increasing: increasing(f;k)
, 
int_seg: {i..j-}
, 
nat: ℕ
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
cand: A c∧ B
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
function: x:A ⟶ B[x]
, 
natural_number: $n
, 
int: ℤ
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
sublist_occurence: sublist_occurence(T;L1;L2;f)
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
so_lambda: λ2x.t[x]
, 
nat: ℕ
, 
uimplies: b supposing a
, 
subtype_rel: A ⊆r B
, 
prop: ℙ
, 
cand: A c∧ B
, 
and: P ∧ Q
, 
so_apply: x[s]
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
, 
false: False
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
ge: i ≥ j 
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
top: Top
, 
int_seg: {i..j-}
, 
guard: {T}
, 
lelt: i ≤ j < k
, 
increasing: increasing(f;k)
, 
less_than: a < b
, 
uiff: uiff(P;Q)
, 
subtract: n - m
, 
sq_type: SQType(T)
, 
select: L[n]
, 
nil: []
, 
it: ⋅
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
squash: ↓T
, 
label: ...$L... t
, 
true: True
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
cons: [a / b]
, 
fadd: fadd(f;g)
Lemmas referenced : 
list_induction, 
all_wf, 
nat_wf, 
int_seg_wf, 
length_wf, 
isect_wf, 
increasing_wf, 
exists_wf, 
list_wf, 
equal_wf, 
length_wf_nat, 
subtype_rel_dep_function, 
int_seg_subtype, 
false_wf, 
nat_properties, 
decidable__le, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermVar_wf, 
intformeq_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_var_lemma, 
int_formula_prop_eq_lemma, 
int_formula_prop_wf, 
select_wf, 
int_seg_properties, 
itermConstant_wf, 
int_term_value_constant_lemma, 
decidable__lt, 
intformless_wf, 
int_formula_prop_less_lemma, 
lelt_wf, 
non_neg_length, 
member-less_than, 
length_of_nil_lemma, 
itermSubtract_wf, 
int_term_value_subtract_lemma, 
add-member-int_seg2, 
subtract_wf, 
nil_wf, 
length_of_cons_lemma, 
cons_wf, 
decidable__equal_int, 
subtype_base_sq, 
set_subtype_base, 
le_wf, 
int_subtype_base, 
stuck-spread, 
base_wf, 
equal-wf-T-base, 
squash_wf, 
true_wf, 
subtype_rel_self, 
iff_weakening_equal, 
increasing_lower_bound, 
itermAdd_wf, 
int_term_value_add_lemma, 
select-cons-hd, 
select_cons_tl, 
subtract-add-cancel, 
fadd_increasing, 
const_nondecreasing, 
less_than_wf, 
add-commutes
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
lambdaFormation, 
cut, 
thin, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
hypothesisEquality, 
lambdaEquality, 
hypothesis, 
functionEquality, 
natural_numberEquality, 
setElimination, 
rename, 
because_Cache, 
cumulativity, 
functionExtensionality, 
applyEquality, 
productEquality, 
intEquality, 
independent_isectElimination, 
equalityTransitivity, 
equalitySymmetry, 
independent_pairFormation, 
dependent_functionElimination, 
unionElimination, 
dependent_pairFormation, 
int_eqEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
computeAll, 
productElimination, 
dependent_set_memberEquality, 
applyLambdaEquality, 
independent_functionElimination, 
universeEquality, 
instantiate, 
baseClosed, 
imageElimination, 
imageMemberEquality, 
addEquality, 
minusEquality, 
hyp_replacement
Latex:
\mforall{}[T:Type]
    \mforall{}L:T  List.  \mforall{}n:\mBbbN{}.  \mforall{}f:\mBbbN{}n  {}\mrightarrow{}  \mBbbN{}||L||.
        \mexists{}L1:T  List.  ((||L1||  =  n)  c\mwedge{}  sublist\_occurence(T;L1;L;f))  supposing  increasing(f;n)
Date html generated:
2017_10_01-AM-08_35_32
Last ObjectModification:
2017_07_26-PM-04_25_51
Theory : list!
Home
Index