Nuprl Lemma : interleaving_occurence_wf

[T:Type]. ∀[L1,L2,L:T List]. ∀[f1:ℕ||L1|| ⟶ ℕ||L||]. ∀[f2:ℕ||L2|| ⟶ ℕ||L||].
  (interleaving_occurence(T;L1;L2;L;f1;f2) ∈ ℙ)


Proof




Definitions occuring in Statement :  interleaving_occurence: interleaving_occurence(T;L1;L2;L;f1;f2) length: ||as|| list: List int_seg: {i..j-} uall: [x:A]. B[x] prop: member: t ∈ T function: x:A ⟶ B[x] natural_number: $n universe: Type
Definitions unfolded in proof :  interleaving_occurence: interleaving_occurence(T;L1;L2;L;f1;f2) uall: [x:A]. B[x] member: t ∈ T prop: and: P ∧ Q nat: all: x:A. B[x] implies:  Q guard: {T} ge: i ≥  decidable: Dec(P) or: P ∨ Q false: False uiff: uiff(P;Q) uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] not: ¬A top: Top subtype_rel: A ⊆B int_seg: {i..j-} so_lambda: λ2x.t[x] lelt: i ≤ j < k less_than: a < b squash: T le: A ≤ B so_apply: x[s]
Lemmas referenced :  equal_wf nat_wf length_wf_nat length_wf add_nat_wf nat_properties decidable__le add-is-int-iff satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf itermAdd_wf intformeq_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_term_value_add_lemma int_formula_prop_eq_lemma int_formula_prop_wf false_wf le_wf increasing_wf int_seg_wf all_wf select_wf int_seg_properties decidable__lt intformless_wf int_formula_prop_less_lemma non_neg_length lelt_wf not_wf list_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut productEquality extract_by_obid sqequalHypSubstitution isectElimination thin hypothesis cumulativity hypothesisEquality dependent_set_memberEquality addEquality lambdaFormation equalityTransitivity equalitySymmetry applyLambdaEquality setElimination rename dependent_functionElimination natural_numberEquality unionElimination pointwiseFunctionality promote_hyp baseApply closedConclusion baseClosed productElimination independent_isectElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality isect_memberEquality voidElimination voidEquality independent_pairFormation computeAll independent_functionElimination because_Cache functionExtensionality applyEquality imageElimination axiomEquality functionEquality universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[L1,L2,L:T  List].  \mforall{}[f1:\mBbbN{}||L1||  {}\mrightarrow{}  \mBbbN{}||L||].  \mforall{}[f2:\mBbbN{}||L2||  {}\mrightarrow{}  \mBbbN{}||L||].
    (interleaving\_occurence(T;L1;L2;L;f1;f2)  \mmember{}  \mBbbP{})



Date html generated: 2017_10_01-AM-08_37_19
Last ObjectModification: 2017_07_26-PM-04_26_27

Theory : list!


Home Index