Nuprl Lemma : nonzero-cross-imp_wf

[r:IntegDom{i}]. ∀[eq:∀x,y:|r|.  Dec(x y ∈ |r|)]. ∀[a:{a:ℕ3 ⟶ |r|| ¬(a 0 ∈ (ℕ3 ⟶ |r|))} ]. ∀[b:{b:ℕ3 ⟶ |r|| 
                                                                                                      (b
                                                                                                      0
                                                                                                      ∈ (ℕ3 ⟶ |r|)))
                                                                                                      ∧ ((a b)
                                                                                                        0
                                                                                                        ∈ (ℕ3
                                                                                                          ⟶ |r|)))} ].
  (nonzero-cross-imp(r;eq;a;b) ∈ {l:{p:ℕ3 ⟶ |r|| ¬(p 0 ∈ (ℕ3 ⟶ |r|))} ((a l) 0 ∈ |r|) ∧ ((b l) 0 ∈ |r|))\000C} )


Proof




Definitions occuring in Statement :  nonzero-cross-imp: nonzero-cross-imp(r;eq;a;b) scalar-product: (a b) cross-product: (a b) zero-vector: 0 int_seg: {i..j-} decidable: Dec(P) uall: [x:A]. B[x] all: x:A. B[x] not: ¬A and: P ∧ Q member: t ∈ T set: {x:A| B[x]}  function: x:A ⟶ B[x] natural_number: $n equal: t ∈ T integ_dom: IntegDom{i} rng_zero: 0 rng_car: |r|
Definitions unfolded in proof :  so_apply: x[s] and: P ∧ Q so_lambda: λ2x.t[x] rng: Rng crng: CRng integ_dom: IntegDom{i} prop: sq_exists: x:A [B[x]] member: t ∈ T uall: [x:A]. B[x] not: ¬A false: False less_than': less_than'(a;b) le: A ≤ B nat: implies:  Q all: x:A. B[x] subtype_rel: A ⊆B cross-product-non-zero-implies-ext
Lemmas referenced :  integ_dom_wf decidable_wf all_wf cross-product_wf zero-vector_wf equal_wf not_wf rng_car_wf int_seg_wf set_wf rng_zero_wf le_wf false_wf scalar-product_wf sq_exists_wf cross-product-non-zero-implies-ext
Rules used in proof :  isect_memberEquality hypothesisEquality applyEquality functionExtensionality productEquality lambdaEquality because_Cache rename setElimination natural_numberEquality functionEquality thin isectElimination extract_by_obid equalitySymmetry equalityTransitivity axiomEquality sqequalRule hypothesis sqequalHypSubstitution cut introduction isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution independent_pairFormation dependent_set_memberEquality productElimination dependent_functionElimination lambdaFormation setEquality universeEquality cumulativity instantiate

Latex:
\mforall{}[r:IntegDom\{i\}].  \mforall{}[eq:\mforall{}x,y:|r|.    Dec(x  =  y)].  \mforall{}[a:\{a:\mBbbN{}3  {}\mrightarrow{}  |r||  \mneg{}(a  =  0)\}  ].  \mforall{}[b:\{b:\mBbbN{}3  {}\mrightarrow{}  |r|| 
                                                                                                                                                                    (\mneg{}(b  =  0))
                                                                                                                                                                    \mwedge{}  (\mneg{}((a  x  b)
                                                                                                                                                                        =  0))\}  ].
    (nonzero-cross-imp(r;eq;a;b)  \mmember{}  \{l:\{p:\mBbbN{}3  {}\mrightarrow{}  |r||  \mneg{}(p  =  0)\}  |  ((a  .  l)  =  0)  \mwedge{}  (\mneg{}((b  .  l)  =  0))\}  )



Date html generated: 2018_05_21-PM-09_44_03
Last ObjectModification: 2017_12_22-PM-02_59_21

Theory : matrices


Home Index