Nuprl Lemma : nonzero-cross-imp_wf
∀[r:IntegDom{i}]. ∀[eq:∀x,y:|r|.  Dec(x = y ∈ |r|)]. ∀[a:{a:ℕ3 ⟶ |r|| ¬(a = 0 ∈ (ℕ3 ⟶ |r|))} ]. ∀[b:{b:ℕ3 ⟶ |r|| 
                                                                                                      (¬(b
                                                                                                      = 0
                                                                                                      ∈ (ℕ3 ⟶ |r|)))
                                                                                                      ∧ (¬((a x b)
                                                                                                        = 0
                                                                                                        ∈ (ℕ3
                                                                                                          ⟶ |r|)))} ].
  (nonzero-cross-imp(r;eq;a;b) ∈ {l:{p:ℕ3 ⟶ |r|| ¬(p = 0 ∈ (ℕ3 ⟶ |r|))} | ((a . l) = 0 ∈ |r|) ∧ (¬((b . l) = 0 ∈ |r|))\000C} )
Proof
Definitions occuring in Statement : 
nonzero-cross-imp: nonzero-cross-imp(r;eq;a;b)
, 
scalar-product: (a . b)
, 
cross-product: (a x b)
, 
zero-vector: 0
, 
int_seg: {i..j-}
, 
decidable: Dec(P)
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
not: ¬A
, 
and: P ∧ Q
, 
member: t ∈ T
, 
set: {x:A| B[x]} 
, 
function: x:A ⟶ B[x]
, 
natural_number: $n
, 
equal: s = t ∈ T
, 
integ_dom: IntegDom{i}
, 
rng_zero: 0
, 
rng_car: |r|
Definitions unfolded in proof : 
so_apply: x[s]
, 
and: P ∧ Q
, 
so_lambda: λ2x.t[x]
, 
rng: Rng
, 
crng: CRng
, 
integ_dom: IntegDom{i}
, 
prop: ℙ
, 
sq_exists: ∃x:A [B[x]]
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
not: ¬A
, 
false: False
, 
less_than': less_than'(a;b)
, 
le: A ≤ B
, 
nat: ℕ
, 
implies: P 
⇒ Q
, 
all: ∀x:A. B[x]
, 
subtype_rel: A ⊆r B
, 
cross-product-non-zero-implies-ext
Lemmas referenced : 
integ_dom_wf, 
decidable_wf, 
all_wf, 
cross-product_wf, 
zero-vector_wf, 
equal_wf, 
not_wf, 
rng_car_wf, 
int_seg_wf, 
set_wf, 
rng_zero_wf, 
le_wf, 
false_wf, 
scalar-product_wf, 
sq_exists_wf, 
cross-product-non-zero-implies-ext
Rules used in proof : 
isect_memberEquality, 
hypothesisEquality, 
applyEquality, 
functionExtensionality, 
productEquality, 
lambdaEquality, 
because_Cache, 
rename, 
setElimination, 
natural_numberEquality, 
functionEquality, 
thin, 
isectElimination, 
extract_by_obid, 
equalitySymmetry, 
equalityTransitivity, 
axiomEquality, 
sqequalRule, 
hypothesis, 
sqequalHypSubstitution, 
cut, 
introduction, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution, 
independent_pairFormation, 
dependent_set_memberEquality, 
productElimination, 
dependent_functionElimination, 
lambdaFormation, 
setEquality, 
universeEquality, 
cumulativity, 
instantiate
Latex:
\mforall{}[r:IntegDom\{i\}].  \mforall{}[eq:\mforall{}x,y:|r|.    Dec(x  =  y)].  \mforall{}[a:\{a:\mBbbN{}3  {}\mrightarrow{}  |r||  \mneg{}(a  =  0)\}  ].  \mforall{}[b:\{b:\mBbbN{}3  {}\mrightarrow{}  |r|| 
                                                                                                                                                                    (\mneg{}(b  =  0))
                                                                                                                                                                    \mwedge{}  (\mneg{}((a  x  b)
                                                                                                                                                                        =  0))\}  ].
    (nonzero-cross-imp(r;eq;a;b)  \mmember{}  \{l:\{p:\mBbbN{}3  {}\mrightarrow{}  |r||  \mneg{}(p  =  0)\}  |  ((a  .  l)  =  0)  \mwedge{}  (\mneg{}((b  .  l)  =  0))\}  )
Date html generated:
2018_05_21-PM-09_44_03
Last ObjectModification:
2017_12_22-PM-02_59_21
Theory : matrices
Home
Index