Nuprl Lemma : rng_lsum_plus

[r:Rng]. ∀[A:Type]. ∀[f,g:A ⟶ |r|]. ∀[as:A List].
  {r} x ∈ as. (f[x] +r g[x]) {r} x ∈ as. f[x] +r Σ{r} x ∈ as. g[x]) ∈ |r|)


Proof




Definitions occuring in Statement :  rng_lsum: Σ{r} x ∈ as. f[x] list: List uall: [x:A]. B[x] infix_ap: y so_apply: x[s] function: x:A ⟶ B[x] universe: Type equal: t ∈ T rng: Rng rng_plus: +r rng_car: |r|
Definitions unfolded in proof :  rev_implies:  Q iff: ⇐⇒ Q guard: {T} uimplies: supposing a subtype_rel: A ⊆B squash: T true: True infix_ap: y prop: and: P ∧ Q top: Top all: x:A. B[x] implies:  Q so_apply: x[s] rng: Rng so_lambda: λ2x.t[x] member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  rng_plus_assoc iff_weakening_equal rng_wf rng_lsum_cons_lemma rng_zero_wf rng_plus_zero rng_lsum_nil_lemma list_wf rng_plus_wf infix_ap_wf rng_lsum_wf rng_car_wf equal_wf list_induction squash_wf true_wf rng_plus_comm rng_plus_ac_1
Rules used in proof :  independent_isectElimination baseClosed imageMemberEquality imageElimination natural_numberEquality equalityTransitivity levelHypothesis equalityUniverse universeEquality functionEquality axiomEquality lambdaFormation productElimination equalitySymmetry voidEquality voidElimination isect_memberEquality dependent_functionElimination independent_functionElimination functionExtensionality applyEquality cumulativity hypothesis because_Cache rename setElimination lambdaEquality sqequalRule hypothesisEquality isectElimination sqequalHypSubstitution extract_by_obid thin cut introduction isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[r:Rng].  \mforall{}[A:Type].  \mforall{}[f,g:A  {}\mrightarrow{}  |r|].  \mforall{}[as:A  List].
    (\mSigma{}\{r\}  x  \mmember{}  as.  (f[x]  +r  g[x])  =  (\mSigma{}\{r\}  x  \mmember{}  as.  f[x]  +r  \mSigma{}\{r\}  x  \mmember{}  as.  g[x]))



Date html generated: 2018_05_21-PM-09_32_50
Last ObjectModification: 2017_12_11-PM-06_29_04

Theory : matrices


Home Index