Nuprl Lemma : mFO-dest-connective_wf
∀[T:Type]. ∀[F:mFOL() ⟶ mFOL() ⟶ (T?)]. ∀[fmla:mFOL()]. ∀[knd:Atom].  (let a,b = dest-knd(fmla) in F[a;b] ∈ T?)
Proof
Definitions occuring in Statement : 
mFO-dest-connective: mFO-dest-connective, 
mFOL: mFOL(), 
uall: ∀[x:A]. B[x], 
so_apply: x[s1;s2], 
unit: Unit, 
member: t ∈ T, 
function: x:A ⟶ B[x], 
union: left + right, 
atom: Atom, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
mFO-dest-connective: mFO-dest-connective, 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
exposed-bfalse: exposed-bfalse, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
uiff: uiff(P;Q), 
and: P ∧ Q, 
uimplies: b supposing a, 
band: p ∧b q, 
ifthenelse: if b then t else f fi , 
so_apply: x[s1;s2], 
bfalse: ff, 
exists: ∃x:A. B[x], 
prop: ℙ, 
or: P ∨ Q, 
sq_type: SQType(T), 
guard: {T}, 
bnot: ¬bb, 
assert: ↑b, 
false: False
Lemmas referenced : 
mFOconnect?_wf, 
bool_wf, 
eqtt_to_assert, 
ifthenelse_wf, 
eq_atom_wf, 
mFOconnect-knd_wf, 
unit_wf2, 
mFOL_wf, 
mFOconnect-left_wf, 
mFOconnect-right_wf, 
it_wf, 
eqff_to_assert, 
equal_wf, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
lambdaFormation, 
unionElimination, 
equalityElimination, 
equalityTransitivity, 
equalitySymmetry, 
productElimination, 
independent_isectElimination, 
sqequalRule, 
unionEquality, 
cumulativity, 
applyEquality, 
functionExtensionality, 
inrEquality, 
dependent_pairFormation, 
promote_hyp, 
dependent_functionElimination, 
instantiate, 
independent_functionElimination, 
because_Cache, 
voidElimination, 
axiomEquality, 
atomEquality, 
isect_memberEquality, 
functionEquality, 
universeEquality
Latex:
\mforall{}[T:Type].  \mforall{}[F:mFOL()  {}\mrightarrow{}  mFOL()  {}\mrightarrow{}  (T?)].  \mforall{}[fmla:mFOL()].  \mforall{}[knd:Atom].
    (let  a,b  =  dest-knd(fmla)  in
      F[a;b]  \mmember{}  T?)
Date html generated:
2018_05_21-PM-10_21_44
Last ObjectModification:
2017_07_26-PM-06_37_59
Theory : minimal-first-order-logic
Home
Index