Nuprl Lemma : A-shift-upto_wf

[Val:Type]. ∀[n:ℕ].  (1 <  (∀[AType:array{i:l}(Val;n)]. ∀[j:ℕn].  (A-shift-upto(AType;j) ∈ A-map Unit)))


Proof




Definitions occuring in Statement :  A-shift-upto: A-shift-upto(AType;j) A-map: A-map array-model: array-model(AType) array: array{i:l}(Val;n) int_seg: {i..j-} nat: less_than: a < b uall: [x:A]. B[x] implies:  Q unit: Unit member: t ∈ T apply: a natural_number: $n universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T implies:  Q A-shift-upto: A-shift-upto(AType;j) let: let all: x:A. B[x] int_seg: {i..j-} lelt: i ≤ j < k and: P ∧ Q le: A ≤ B less_than': less_than'(a;b) false: False not: ¬A prop: nat: subtype_rel: A ⊆B guard: {T} ge: i ≥  decidable: Dec(P) or: P ∨ Q uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] top: Top
Lemmas referenced :  A-bind_wf unit_wf2 nat_wf less_than_wf array_wf int_seg_wf int_term_value_subtract_lemma itermSubtract_wf subtract_wf A-assign_wf int_formula_prop_less_lemma intformless_wf decidable__lt int_formula_prop_wf int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_not_lemma int_formula_prop_and_lemma itermVar_wf itermConstant_wf intformle_wf intformnot_wf intformand_wf satisfiable-full-omega-tt decidable__le nat_properties int_seg_properties A-fetch'_wf A-coerce_wf lelt_wf false_wf A-loop_wf2
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lambdaFormation sqequalRule lemma_by_obid sqequalHypSubstitution isectElimination thin cumulativity hypothesisEquality dependent_functionElimination dependent_set_memberEquality natural_numberEquality independent_pairFormation hypothesis setElimination rename lambdaEquality applyEquality because_Cache productElimination unionElimination independent_isectElimination dependent_pairFormation int_eqEquality intEquality isect_memberEquality voidElimination voidEquality computeAll axiomEquality equalityTransitivity equalitySymmetry universeEquality

Latex:
\mforall{}[Val:Type].  \mforall{}[n:\mBbbN{}].
    (1  <  n  {}\mRightarrow{}  (\mforall{}[AType:array\{i:l\}(Val;n)].  \mforall{}[j:\mBbbN{}n].    (A-shift-upto(AType;j)  \mmember{}  A-map  Unit)))



Date html generated: 2016_05_15-PM-02_21_19
Last ObjectModification: 2016_01_15-PM-00_17_55

Theory : monads


Home Index