Nuprl Lemma : Paasche-alg-1_wf
∀[k:ℕ]. (Paasche-alg-1(k) ∈ ℤ)
Proof
Definitions occuring in Statement :
Paasche-alg-1: Paasche-alg-1(k)
,
nat: ℕ
,
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
int: ℤ
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
Paasche-alg-1: Paasche-alg-1(k)
,
all: ∀x:A. B[x]
,
implies: P
⇒ Q
,
bool: 𝔹
,
unit: Unit
,
it: ⋅
,
btrue: tt
,
ifthenelse: if b then t else f fi
,
uiff: uiff(P;Q)
,
and: P ∧ Q
,
uimplies: b supposing a
,
bfalse: ff
,
exists: ∃x:A. B[x]
,
prop: ℙ
,
or: P ∨ Q
,
sq_type: SQType(T)
,
guard: {T}
,
bnot: ¬bb
,
assert: ↑b
,
false: False
,
nat: ℕ
,
le: A ≤ B
,
less_than': less_than'(a;b)
,
not: ¬A
Lemmas referenced :
Longs-algorithm_wf,
eq_int_wf,
bool_wf,
eqtt_to_assert,
assert_of_eq_int,
eqff_to_assert,
equal_wf,
bool_cases_sqequal,
subtype_base_sq,
bool_subtype_base,
assert-bnot,
neg_assert_of_eq_int,
nat_wf,
false_wf,
le_wf
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation,
introduction,
cut,
sqequalRule,
extract_by_obid,
sqequalHypSubstitution,
isectElimination,
thin,
lambdaEquality,
hypothesisEquality,
natural_numberEquality,
hypothesis,
lambdaFormation,
unionElimination,
equalityElimination,
productElimination,
independent_isectElimination,
because_Cache,
equalityTransitivity,
equalitySymmetry,
dependent_pairFormation,
promote_hyp,
dependent_functionElimination,
instantiate,
cumulativity,
independent_functionElimination,
voidElimination,
intEquality,
dependent_set_memberEquality,
independent_pairFormation,
axiomEquality
Latex:
\mforall{}[k:\mBbbN{}]. (Paasche-alg-1(k) \mmember{} \mBbbZ{})
Date html generated:
2018_05_21-PM-10_15_51
Last ObjectModification:
2017_07_26-PM-06_35_55
Theory : power!series
Home
Index