Nuprl Lemma : Longs-algorithm_wf
∀[h:ℤ ⟶ ℤ]. ∀n:ℕ ⟶ ℕ. ∀a,b,c:ℕ.  (Longs-algorithm(h;n;a;b;c) ∈ ℤ)
Proof
Definitions occuring in Statement : 
Longs-algorithm: Longs-algorithm(h;n;a;b;c)
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
, 
int: ℤ
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
all: ∀x:A. B[x]
, 
nat: ℕ
, 
implies: P 
⇒ Q
, 
false: False
, 
ge: i ≥ j 
, 
uimplies: b supposing a
, 
not: ¬A
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
top: Top
, 
and: P ∧ Q
, 
prop: ℙ
, 
Longs-algorithm: Longs-algorithm(h;n;a;b;c)
, 
subtract: n - m
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
uiff: uiff(P;Q)
, 
bfalse: ff
, 
or: P ∨ Q
, 
sq_type: SQType(T)
, 
guard: {T}
, 
bnot: ¬bb
, 
ifthenelse: if b then t else f fi 
, 
assert: ↑b
, 
nequal: a ≠ b ∈ T 
, 
has-value: (a)↓
, 
less_than: a < b
, 
less_than': less_than'(a;b)
, 
true: True
, 
squash: ↓T
, 
rev_implies: P 
⇐ Q
, 
iff: P 
⇐⇒ Q
, 
decidable: Dec(P)
, 
subtype_rel: A ⊆r B
, 
le: A ≤ B
Lemmas referenced : 
nat_properties, 
full-omega-unsat, 
intformand_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
intformless_wf, 
istype-int, 
int_formula_prop_and_lemma, 
istype-void, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_wf, 
ge_wf, 
istype-less_than, 
subtract-1-ge-0, 
eq_int_wf, 
eqtt_to_assert, 
assert_of_eq_int, 
intformeq_wf, 
int_formula_prop_eq_lemma, 
eqff_to_assert, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_wf, 
bool_subtype_base, 
assert-bnot, 
neg_assert_of_eq_int, 
value-type-has-value, 
lt_int_wf, 
assert_of_lt_int, 
iff_weakening_uiff, 
assert_wf, 
less_than_wf, 
istype-top, 
decidable__le, 
intformnot_wf, 
int_formula_prop_not_lemma, 
istype-le, 
subtract_wf, 
istype-nat, 
itermSubtract_wf, 
int_term_value_subtract_lemma, 
false_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
lambdaFormation_alt, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
setElimination, 
rename, 
sqequalRule, 
intWeakElimination, 
natural_numberEquality, 
independent_isectElimination, 
approximateComputation, 
independent_functionElimination, 
dependent_pairFormation_alt, 
lambdaEquality_alt, 
int_eqEquality, 
dependent_functionElimination, 
isect_memberEquality_alt, 
voidElimination, 
independent_pairFormation, 
universeIsType, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
functionIsTypeImplies, 
inhabitedIsType, 
because_Cache, 
applyEquality, 
callbyvalueReduce, 
sqleReflexivity, 
unionElimination, 
equalityElimination, 
productElimination, 
int_eqReduceTrueSq, 
equalityIstype, 
promote_hyp, 
instantiate, 
cumulativity, 
int_eqReduceFalseSq, 
addEquality, 
lessCases, 
axiomSqEquality, 
isectIsTypeImplies, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
dependent_set_memberEquality_alt, 
closedConclusion, 
functionIsType, 
pointwiseFunctionality
Latex:
\mforall{}[h:\mBbbZ{}  {}\mrightarrow{}  \mBbbZ{}].  \mforall{}n:\mBbbN{}  {}\mrightarrow{}  \mBbbN{}.  \mforall{}a,b,c:\mBbbN{}.    (Longs-algorithm(h;n;a;b;c)  \mmember{}  \mBbbZ{})
Date html generated:
2019_10_16-AM-11_37_39
Last ObjectModification:
2018_12_08-AM-11_55_08
Theory : power!series
Home
Index