Nuprl Lemma : Longs-algorithm_wf

[h:ℤ ⟶ ℤ]. ∀n:ℕ ⟶ ℕ. ∀a,b,c:ℕ.  (Longs-algorithm(h;n;a;b;c) ∈ ℤ)


Proof




Definitions occuring in Statement :  Longs-algorithm: Longs-algorithm(h;n;a;b;c) nat: uall: [x:A]. B[x] all: x:A. B[x] member: t ∈ T function: x:A ⟶ B[x] int:
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] nat: implies:  Q false: False ge: i ≥  uimplies: supposing a not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] top: Top and: P ∧ Q prop: Longs-algorithm: Longs-algorithm(h;n;a;b;c) subtract: m bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) bfalse: ff or: P ∨ Q sq_type: SQType(T) guard: {T} bnot: ¬bb ifthenelse: if then else fi  assert: b nequal: a ≠ b ∈  has-value: (a)↓ less_than: a < b less_than': less_than'(a;b) true: True squash: T rev_implies:  Q iff: ⇐⇒ Q decidable: Dec(P) subtype_rel: A ⊆B le: A ≤ B
Lemmas referenced :  nat_properties full-omega-unsat intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf istype-int int_formula_prop_and_lemma istype-void int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf istype-less_than subtract-1-ge-0 eq_int_wf eqtt_to_assert assert_of_eq_int intformeq_wf int_formula_prop_eq_lemma eqff_to_assert bool_cases_sqequal subtype_base_sq bool_wf bool_subtype_base assert-bnot neg_assert_of_eq_int value-type-has-value lt_int_wf assert_of_lt_int iff_weakening_uiff assert_wf less_than_wf istype-top decidable__le intformnot_wf int_formula_prop_not_lemma istype-le subtract_wf istype-nat itermSubtract_wf int_term_value_subtract_lemma false_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut lambdaFormation_alt extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis setElimination rename sqequalRule intWeakElimination natural_numberEquality independent_isectElimination approximateComputation independent_functionElimination dependent_pairFormation_alt lambdaEquality_alt int_eqEquality dependent_functionElimination isect_memberEquality_alt voidElimination independent_pairFormation universeIsType axiomEquality equalityTransitivity equalitySymmetry functionIsTypeImplies inhabitedIsType because_Cache applyEquality callbyvalueReduce sqleReflexivity unionElimination equalityElimination productElimination int_eqReduceTrueSq equalityIstype promote_hyp instantiate cumulativity int_eqReduceFalseSq addEquality lessCases axiomSqEquality isectIsTypeImplies imageMemberEquality baseClosed imageElimination dependent_set_memberEquality_alt closedConclusion functionIsType pointwiseFunctionality

Latex:
\mforall{}[h:\mBbbZ{}  {}\mrightarrow{}  \mBbbZ{}].  \mforall{}n:\mBbbN{}  {}\mrightarrow{}  \mBbbN{}.  \mforall{}a,b,c:\mBbbN{}.    (Longs-algorithm(h;n;a;b;c)  \mmember{}  \mBbbZ{})



Date html generated: 2019_10_16-AM-11_37_39
Last ObjectModification: 2018_12_08-AM-11_55_08

Theory : power!series


Home Index