Nuprl Lemma : fps-elim-div

[X:Type]
  ∀[eq:EqDecider(X)]. ∀[r:CRng]. ∀[f,g:PowerSeries(X;r)]. ∀[z:|r|]. ∀[x:X].
    (fps-elim(x) (f÷g)) (fps-elim(x) fps-elim(x) g) ∈ PowerSeries(X;r) 
    supposing ((fps-elim(x) f) 0 ∈ PowerSeries(X;r))) ∧ ((g[{}] z) 1 ∈ |r|) 
  supposing valueall-type(X)


Proof




Definitions occuring in Statement :  fps-elim: fps-elim(x) fps-div: (f÷g) fps-zero: 0 fps-coeff: f[b] power-series: PowerSeries(X;r) empty-bag: {} deq: EqDecider(T) valueall-type: valueall-type(T) uimplies: supposing a uall: [x:A]. B[x] infix_ap: y not: ¬A and: P ∧ Q apply: a universe: Type equal: t ∈ T crng: CRng rng_one: 1 rng_times: * rng_car: |r|
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a and: P ∧ Q squash: T prop: true: True subtype_rel: A ⊆B guard: {T} iff: ⇐⇒ Q rev_implies:  Q implies:  Q fun_thru_2op: FunThru2op(A;B;opa;opb;f) infix_ap: y all: x:A. B[x] cand: c∧ B fps-coeff: f[b] fps-elim: fps-elim(x) ifthenelse: if then else fi  bag-deq-member: bag-deq-member(eq;x;b) deq-member: x ∈b L reduce: reduce(f;k;as) list_ind: list_ind empty-bag: {} nil: [] it: bfalse: ff crng: CRng rng: Rng
Lemmas referenced :  fps-div-property equal_wf squash_wf true_wf power-series_wf fps-elim_wf iff_weakening_equal fps-elim-hom fps-div_wf fps-div-unique not_wf fps-zero_wf rng_car_wf rng_times_wf fps-coeff_wf empty-bag_wf rng_one_wf crng_wf deq_wf valueall-type_wf
Rules used in proof :  cut introduction extract_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation hypothesis sqequalHypSubstitution isectElimination thin hypothesisEquality independent_isectElimination productElimination applyEquality lambdaEquality imageElimination equalityTransitivity equalitySymmetry universeEquality cumulativity because_Cache natural_numberEquality sqequalRule imageMemberEquality baseClosed independent_functionElimination dependent_functionElimination independent_pairFormation productEquality setElimination rename isect_memberEquality axiomEquality

Latex:
\mforall{}[X:Type]
    \mforall{}[eq:EqDecider(X)].  \mforall{}[r:CRng].  \mforall{}[f,g:PowerSeries(X;r)].  \mforall{}[z:|r|].  \mforall{}[x:X].
        (fps-elim(x)  (f\mdiv{}g))  =  (fps-elim(x)  f\mdiv{}fps-elim(x)  g) 
        supposing  (\mneg{}((fps-elim(x)  f)  =  0))  \mwedge{}  ((g[\{\}]  *  z)  =  1) 
    supposing  valueall-type(X)



Date html generated: 2018_05_21-PM-09_59_12
Last ObjectModification: 2017_07_26-PM-06_33_43

Theory : power!series


Home Index