Nuprl Lemma : fps-not-null

[p:FinProbSpace]. (null(p) ff)


Proof




Definitions occuring in Statement :  finite-prob-space: FinProbSpace null: null(as) bfalse: ff uall: [x:A]. B[x] sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T finite-prob-space: FinProbSpace all: x:A. B[x] or: P ∨ Q uimplies: supposing a and: P ∧ Q squash: T prop: assert: b ifthenelse: if then else fi  btrue: tt bfalse: ff iff: ⇐⇒ Q implies:  Q false: False uiff: uiff(P;Q) qeq: qeq(r;s) callbyvalueall: callbyvalueall evalall: evalall(t) qsum: Σa ≤ j < b. E[j] rng_sum: rng_sum mon_itop: Π lb ≤ i < ub. E[i] itop: Π(op,id) lb ≤ i < ub. E[i] ycomb: Y lt_int: i <j length: ||as|| list_ind: list_ind nil: [] it: grp_id: e pi1: fst(t) pi2: snd(t) add_grp_of_rng: r↓+gp rng_zero: 0 qrng: <ℚ+*> eq_int: (i =z j) rev_implies:  Q true: True subtype_rel: A ⊆B guard: {T} sq_type: SQType(T) cons: [a b] top: Top
Lemmas referenced :  rationals_wf list-cases null_nil_lemma subtype_base_sq bool_wf bool_subtype_base equal_wf squash_wf true_wf btrue_wf ppcc-problem unit_wf2 iff_imp_equal_bool bfalse_wf assert-qeq false_wf iff_weakening_equal product_subtype_list null_cons_lemma finite-prob-space_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalHypSubstitution setElimination thin rename extract_by_obid hypothesis isectElimination dependent_functionElimination hypothesisEquality unionElimination sqequalRule instantiate cumulativity independent_isectElimination productElimination applyEquality lambdaEquality imageElimination equalityTransitivity equalitySymmetry universeEquality because_Cache unionEquality inlEquality independent_pairFormation lambdaFormation voidElimination natural_numberEquality imageMemberEquality baseClosed independent_functionElimination promote_hyp hypothesis_subsumption isect_memberEquality voidEquality sqequalAxiom

Latex:
\mforall{}[p:FinProbSpace].  (null(p)  \msim{}  ff)



Date html generated: 2018_05_22-AM-00_33_22
Last ObjectModification: 2017_07_26-PM-06_59_44

Theory : randomness


Home Index