Nuprl Lemma : approximate-qsqrt-ext

a:{a:ℚ0 ≤ a} . ∀n:ℕ+.  (∃q:ℚ [((0 ≤ q) ∧ |(q q) a| < (1/n))])


Proof




Definitions occuring in Statement :  qabs: |r| qle: r ≤ s qless: r < s qsub: s qdiv: (r/s) qmul: s rationals: nat_plus: + all: x:A. B[x] sq_exists: x:A [B[x]] and: P ∧ Q set: {x:A| B[x]}  natural_number: $n
Definitions unfolded in proof :  member: t ∈ T experimental: experimental{impliesFunctionality}(possibleextract) subtract: m qsub: s qadd: s callbyvalueall: callbyvalueall evalall: evalall(t) outl: outl(x) bottom: outr: outr(x) ifthenelse: if then else fi  btrue: tt it: bfalse: ff qpositive: qpositive(r) lt_int: i <j bor: p ∨bq band: p ∧b q qeq: qeq(r;s) eq_int: (i =z j) approximate-qsqrt better-q-elim square-between-lemma3 sq_stable_from_decidable decidable__qle q-elim square-between-lemma2 sq_stable__from_stable stable__from_decidable any: any x decidable__lt square-between-lemma1 decidable__squash decidable__and decidable__less_than' decidable_functionality squash_elim iff_preserves_decidability uall: [x:A]. B[x] so_lambda: so_lambda(x,y,z,w.t[x; y; z; w]) so_apply: x[s1;s2;s3;s4] top: Top uimplies: supposing a so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] so_lambda: λ2x.t[x] so_apply: x[s]
Lemmas referenced :  approximate-qsqrt lifting-strict-spread istype-void strict4-apply strict4-spread lifting-strict-decide strict4-decide lifting-strict-less better-q-elim square-between-lemma3 sq_stable_from_decidable decidable__qle q-elim square-between-lemma2 sq_stable__from_stable stable__from_decidable decidable__lt square-between-lemma1 decidable__squash decidable__and decidable__less_than' decidable_functionality squash_elim iff_preserves_decidability
Rules used in proof :  introduction sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity cut instantiate extract_by_obid hypothesis sqequalRule thin sqequalHypSubstitution equalityTransitivity equalitySymmetry isectElimination baseClosed isect_memberEquality_alt voidElimination independent_isectElimination

Latex:
\mforall{}a:\{a:\mBbbQ{}|  0  \mleq{}  a\}  .  \mforall{}n:\mBbbN{}\msupplus{}.    (\mexists{}q:\mBbbQ{}  [((0  \mleq{}  q)  \mwedge{}  |(q  *  q)  -  a|  <  (1/n))])



Date html generated: 2019_10_16-PM-00_38_12
Last ObjectModification: 2019_06_26-PM-04_16_38

Theory : rationals


Home Index