Nuprl Lemma : square-between-lemma1

n:ℕ+. ∀k:ℕ1.  (∃q:ℚ [(((k/n) ≤ (q q)) ∧ q < (k 1/n) ∧ (0 ≤ q))])


Proof




Definitions occuring in Statement :  qle: r ≤ s qless: r < s qdiv: (r/s) qmul: s rationals: int_seg: {i..j-} nat_plus: + all: x:A. B[x] sq_exists: x:A [B[x]] and: P ∧ Q subtract: m add: m natural_number: $n
Definitions unfolded in proof :  all: x:A. B[x] sq_exists: x:A [B[x]] member: t ∈ T uall: [x:A]. B[x] nat: nat_plus: + int_seg: {i..j-} guard: {T} lelt: i ≤ j < k and: P ∧ Q decidable: Dec(P) or: P ∨ Q uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False implies:  Q not: ¬A top: Top prop: subtype_rel: A ⊆B le: A ≤ B less_than': less_than'(a;b) int_nzero: -o nequal: a ≠ b ∈  cand: c∧ B uiff: uiff(P;Q) ge: i ≥  rev_uimplies: rev_uimplies(P;Q) so_lambda: λ2x.t[x] so_apply: x[s] true: True squash: T iff: ⇐⇒ Q rev_implies:  Q qmul: s callbyvalueall: callbyvalueall evalall: evalall(t) ifthenelse: if then else fi  btrue: tt sq_type: SQType(T)
Lemmas referenced :  qdiv_wf isqrt_wf mul_bounds_1a int_seg_properties subtract_wf nat_plus_properties decidable__le satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf itermConstant_wf itermMultiply_wf itermVar_wf intformless_wf itermSubtract_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_mul_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_term_value_subtract_lemma int_formula_prop_wf le_wf int_seg_subtype_nat false_wf int_nzero-rational intformeq_wf int_formula_prop_eq_lemma equal-wf-base int_subtype_base nequal_wf isqrt-property nat_wf qmul_preserves_qle qmul_wf qless-int nat_properties decidable__lt qmul_preserves_qless qdiv-non-neg1 qle-int itermAdd_wf int_term_value_add_lemma less_than_wf equal_wf qle_wf subtype_rel_set rationals_wf lelt_wf int-subtype-rationals subtype_rel_sets qless_wf int_seg_wf nat_plus_wf qmul-mul equal-wf-T-base int-equal-in-rationals not_wf squash_wf true_wf qmul-qdiv-cancel3 qmul_assoc_qrng qmul-qdiv-cancel iff_weakening_equal qmul_ac_1_qrng qmul_comm_qrng qmul_assoc subtype_base_sq decidable__equal_int mul_preserves_lt itermMinus_wf int_term_value_minus_lemma mul_preserves_le
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation dependent_set_memberFormation cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin addEquality dependent_set_memberEquality multiplyEquality natural_numberEquality setElimination rename because_Cache hypothesis hypothesisEquality productElimination dependent_functionElimination unionElimination independent_isectElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality isect_memberEquality voidElimination voidEquality sqequalRule independent_pairFormation computeAll applyEquality baseApply closedConclusion baseClosed productEquality equalityTransitivity equalitySymmetry independent_functionElimination setEquality applyLambdaEquality addLevel impliesFunctionality imageElimination imageMemberEquality universeEquality instantiate cumulativity minusEquality

Latex:
\mforall{}n:\mBbbN{}\msupplus{}.  \mforall{}k:\mBbbN{}n  -  1.    (\mexists{}q:\mBbbQ{}  [(((k/n)  \mleq{}  (q  *  q))  \mwedge{}  q  *  q  <  (k  +  1/n)  \mwedge{}  (0  \mleq{}  q))])



Date html generated: 2018_05_22-AM-00_29_14
Last ObjectModification: 2017_07_26-PM-06_57_32

Theory : rationals


Home Index