Nuprl Lemma : square-between-lemma1
∀n:ℕ+. ∀k:ℕn - 1.  (∃q:ℚ [(((k/n) ≤ (q * q)) ∧ q * q < (k + 1/n) ∧ (0 ≤ q))])
Proof
Definitions occuring in Statement : 
qle: r ≤ s
, 
qless: r < s
, 
qdiv: (r/s)
, 
qmul: r * s
, 
rationals: ℚ
, 
int_seg: {i..j-}
, 
nat_plus: ℕ+
, 
all: ∀x:A. B[x]
, 
sq_exists: ∃x:A [B[x]]
, 
and: P ∧ Q
, 
subtract: n - m
, 
add: n + m
, 
natural_number: $n
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
sq_exists: ∃x:A [B[x]]
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
nat: ℕ
, 
nat_plus: ℕ+
, 
int_seg: {i..j-}
, 
guard: {T}
, 
lelt: i ≤ j < k
, 
and: P ∧ Q
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
uimplies: b supposing a
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
implies: P 
⇒ Q
, 
not: ¬A
, 
top: Top
, 
prop: ℙ
, 
subtype_rel: A ⊆r B
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
, 
int_nzero: ℤ-o
, 
nequal: a ≠ b ∈ T 
, 
cand: A c∧ B
, 
uiff: uiff(P;Q)
, 
ge: i ≥ j 
, 
rev_uimplies: rev_uimplies(P;Q)
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
true: True
, 
squash: ↓T
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
qmul: r * s
, 
callbyvalueall: callbyvalueall, 
evalall: evalall(t)
, 
ifthenelse: if b then t else f fi 
, 
btrue: tt
, 
sq_type: SQType(T)
Lemmas referenced : 
qdiv_wf, 
isqrt_wf, 
mul_bounds_1a, 
int_seg_properties, 
subtract_wf, 
nat_plus_properties, 
decidable__le, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermMultiply_wf, 
itermVar_wf, 
intformless_wf, 
itermSubtract_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_mul_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_term_value_subtract_lemma, 
int_formula_prop_wf, 
le_wf, 
int_seg_subtype_nat, 
false_wf, 
int_nzero-rational, 
intformeq_wf, 
int_formula_prop_eq_lemma, 
equal-wf-base, 
int_subtype_base, 
nequal_wf, 
isqrt-property, 
nat_wf, 
qmul_preserves_qle, 
qmul_wf, 
qless-int, 
nat_properties, 
decidable__lt, 
qmul_preserves_qless, 
qdiv-non-neg1, 
qle-int, 
itermAdd_wf, 
int_term_value_add_lemma, 
less_than_wf, 
equal_wf, 
qle_wf, 
subtype_rel_set, 
rationals_wf, 
lelt_wf, 
int-subtype-rationals, 
subtype_rel_sets, 
qless_wf, 
int_seg_wf, 
nat_plus_wf, 
qmul-mul, 
equal-wf-T-base, 
int-equal-in-rationals, 
not_wf, 
squash_wf, 
true_wf, 
qmul-qdiv-cancel3, 
qmul_assoc_qrng, 
qmul-qdiv-cancel, 
iff_weakening_equal, 
qmul_ac_1_qrng, 
qmul_comm_qrng, 
qmul_assoc, 
subtype_base_sq, 
decidable__equal_int, 
mul_preserves_lt, 
itermMinus_wf, 
int_term_value_minus_lemma, 
mul_preserves_le
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
dependent_set_memberFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
addEquality, 
dependent_set_memberEquality, 
multiplyEquality, 
natural_numberEquality, 
setElimination, 
rename, 
because_Cache, 
hypothesis, 
hypothesisEquality, 
productElimination, 
dependent_functionElimination, 
unionElimination, 
independent_isectElimination, 
dependent_pairFormation, 
lambdaEquality, 
int_eqEquality, 
intEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
sqequalRule, 
independent_pairFormation, 
computeAll, 
applyEquality, 
baseApply, 
closedConclusion, 
baseClosed, 
productEquality, 
equalityTransitivity, 
equalitySymmetry, 
independent_functionElimination, 
setEquality, 
applyLambdaEquality, 
addLevel, 
impliesFunctionality, 
imageElimination, 
imageMemberEquality, 
universeEquality, 
instantiate, 
cumulativity, 
minusEquality
Latex:
\mforall{}n:\mBbbN{}\msupplus{}.  \mforall{}k:\mBbbN{}n  -  1.    (\mexists{}q:\mBbbQ{}  [(((k/n)  \mleq{}  (q  *  q))  \mwedge{}  q  *  q  <  (k  +  1/n)  \mwedge{}  (0  \mleq{}  q))])
Date html generated:
2018_05_22-AM-00_29_14
Last ObjectModification:
2017_07_26-PM-06_57_32
Theory : rationals
Home
Index