Nuprl Lemma : approximate-qsqrt

a:{a:ℚ0 ≤ a} . ∀n:ℕ+.  (∃q:ℚ [((0 ≤ q) ∧ |(q q) a| < (1/n))])


Proof




Definitions occuring in Statement :  qabs: |r| qle: r ≤ s qless: r < s qsub: s qdiv: (r/s) qmul: s rationals: nat_plus: + all: x:A. B[x] sq_exists: x:A [B[x]] and: P ∧ Q set: {x:A| B[x]}  natural_number: $n
Definitions unfolded in proof :  all: x:A. B[x] uall: [x:A]. B[x] member: t ∈ T subtype_rel: A ⊆B implies:  Q sq_stable: SqStable(P) squash: T exists: x:A. B[x] nat_plus: + cand: c∧ B not: ¬A iff: ⇐⇒ Q and: P ∧ Q prop: so_lambda: λ2x.t[x] so_apply: x[s] uimplies: supposing a sq_exists: x:A [B[x]] uiff: uiff(P;Q) decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) false: False true: True guard: {T} nat: rev_implies:  Q rev_uimplies: rev_uimplies(P;Q) qsub: s
Lemmas referenced :  sq_stable_from_decidable qle_wf int-subtype-rationals decidable__qle better-q-elim nat_plus_properties iff_weakening_uiff assert_wf qeq_wf2 equal-wf-base rationals_wf int_subtype_base assert-qeq istype-assert sq_exists_wf qless_wf qabs_wf qsub_wf qmul_wf qdiv_wf subtype_rel_set less_than_wf int_nzero-rational nat_plus_inc_int_nzero nat_plus_wf qmul_preserves_qle2 qle-int decidable__le full-omega-unsat intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf istype-int int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf qle_witness squash_wf true_wf qmul_zero_qrng subtype_rel_self qmul-qdiv-cancel iff_weakening_equal square-between-lemma3 istype-le decidable__lt istype-less_than qabs-as-qmax qmax_strict_lb qadd_preserves_qless qadd_wf qadd_com qadd_comm_q qadd_inv_assoc_q qmul_over_plus_qrng qinv_inv_q mon_assoc_q qadd_ac_1_q qinverse_q mon_ident_q
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt setElimination thin rename cut introduction extract_by_obid sqequalHypSubstitution isectElimination because_Cache applyEquality hypothesis sqequalRule hypothesisEquality independent_functionElimination dependent_functionElimination imageMemberEquality baseClosed imageElimination productElimination universeIsType equalityTransitivity equalitySymmetry hyp_replacement applyLambdaEquality functionEquality lambdaEquality_alt productEquality closedConclusion natural_numberEquality intEquality inhabitedIsType independent_isectElimination setIsType unionElimination approximateComputation dependent_pairFormation_alt int_eqEquality Error :memTop,  independent_pairFormation voidElimination isect_memberFormation_alt instantiate universeEquality dependent_set_memberEquality_alt productIsType minusEquality

Latex:
\mforall{}a:\{a:\mBbbQ{}|  0  \mleq{}  a\}  .  \mforall{}n:\mBbbN{}\msupplus{}.    (\mexists{}q:\mBbbQ{}  [((0  \mleq{}  q)  \mwedge{}  |(q  *  q)  -  a|  <  (1/n))])



Date html generated: 2020_05_20-AM-09_30_52
Last ObjectModification: 2019_12_31-PM-04_59_54

Theory : rationals


Home Index