Nuprl Lemma : approximate-qsqrt
∀a:{a:ℚ| 0 ≤ a} . ∀n:ℕ+.  (∃q:ℚ [((0 ≤ q) ∧ |(q * q) - a| < (1/n))])
Proof
Definitions occuring in Statement : 
qabs: |r|
, 
qle: r ≤ s
, 
qless: r < s
, 
qsub: r - s
, 
qdiv: (r/s)
, 
qmul: r * s
, 
rationals: ℚ
, 
nat_plus: ℕ+
, 
all: ∀x:A. B[x]
, 
sq_exists: ∃x:A [B[x]]
, 
and: P ∧ Q
, 
set: {x:A| B[x]} 
, 
natural_number: $n
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
subtype_rel: A ⊆r B
, 
implies: P 
⇒ Q
, 
sq_stable: SqStable(P)
, 
squash: ↓T
, 
exists: ∃x:A. B[x]
, 
nat_plus: ℕ+
, 
cand: A c∧ B
, 
not: ¬A
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
uimplies: b supposing a
, 
sq_exists: ∃x:A [B[x]]
, 
uiff: uiff(P;Q)
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
false: False
, 
true: True
, 
guard: {T}
, 
nat: ℕ
, 
rev_implies: P 
⇐ Q
, 
rev_uimplies: rev_uimplies(P;Q)
, 
qsub: r - s
Lemmas referenced : 
sq_stable_from_decidable, 
qle_wf, 
int-subtype-rationals, 
decidable__qle, 
better-q-elim, 
nat_plus_properties, 
iff_weakening_uiff, 
assert_wf, 
qeq_wf2, 
equal-wf-base, 
rationals_wf, 
int_subtype_base, 
assert-qeq, 
istype-assert, 
sq_exists_wf, 
qless_wf, 
qabs_wf, 
qsub_wf, 
qmul_wf, 
qdiv_wf, 
subtype_rel_set, 
less_than_wf, 
int_nzero-rational, 
nat_plus_inc_int_nzero, 
nat_plus_wf, 
qmul_preserves_qle2, 
qle-int, 
decidable__le, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
intformless_wf, 
istype-int, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_wf, 
qle_witness, 
squash_wf, 
true_wf, 
qmul_zero_qrng, 
subtype_rel_self, 
qmul-qdiv-cancel, 
iff_weakening_equal, 
square-between-lemma3, 
istype-le, 
decidable__lt, 
istype-less_than, 
qabs-as-qmax, 
qmax_strict_lb, 
qadd_preserves_qless, 
qadd_wf, 
qadd_com, 
qadd_comm_q, 
qadd_inv_assoc_q, 
qmul_over_plus_qrng, 
qinv_inv_q, 
mon_assoc_q, 
qadd_ac_1_q, 
qinverse_q, 
mon_ident_q
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
setElimination, 
thin, 
rename, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
because_Cache, 
applyEquality, 
hypothesis, 
sqequalRule, 
hypothesisEquality, 
independent_functionElimination, 
dependent_functionElimination, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
productElimination, 
universeIsType, 
equalityTransitivity, 
equalitySymmetry, 
hyp_replacement, 
applyLambdaEquality, 
functionEquality, 
lambdaEquality_alt, 
productEquality, 
closedConclusion, 
natural_numberEquality, 
intEquality, 
inhabitedIsType, 
independent_isectElimination, 
setIsType, 
unionElimination, 
approximateComputation, 
dependent_pairFormation_alt, 
int_eqEquality, 
Error :memTop, 
independent_pairFormation, 
voidElimination, 
isect_memberFormation_alt, 
instantiate, 
universeEquality, 
dependent_set_memberEquality_alt, 
productIsType, 
minusEquality
Latex:
\mforall{}a:\{a:\mBbbQ{}|  0  \mleq{}  a\}  .  \mforall{}n:\mBbbN{}\msupplus{}.    (\mexists{}q:\mBbbQ{}  [((0  \mleq{}  q)  \mwedge{}  |(q  *  q)  -  a|  <  (1/n))])
Date html generated:
2020_05_20-AM-09_30_52
Last ObjectModification:
2019_12_31-PM-04_59_54
Theory : rationals
Home
Index