Nuprl Lemma : square-between-lemma3

a:ℕ. ∀b,n:ℕ+.  (∃q:ℚ [((a/b) (1/n) < q ∧ q < (a/b) (1/n) ∧ (0 ≤ q))])


Proof




Definitions occuring in Statement :  qle: r ≤ s qless: r < s qsub: s qdiv: (r/s) qmul: s qadd: s rationals: nat_plus: + nat: all: x:A. B[x] sq_exists: x:A [B[x]] and: P ∧ Q natural_number: $n
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T uall: [x:A]. B[x] nat: nat_plus: + subtype_rel: A ⊆B prop: so_lambda: λ2x.t[x] so_apply: x[s] uimplies: supposing a sq_exists: x:A [B[x]] and: P ∧ Q sq_type: SQType(T) implies:  Q guard: {T} nequal: a ≠ b ∈  ge: i ≥  not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False top: Top cand: c∧ B uiff: uiff(P;Q) decidable: Dec(P) or: P ∨ Q squash: T true: True iff: ⇐⇒ Q rev_uimplies: rev_uimplies(P;Q) qsub: s qmul: s callbyvalueall: callbyvalueall evalall: evalall(t) ifthenelse: if then else fi  btrue: tt rev_implies:  Q qge: a ≥ b
Lemmas referenced :  nat_wf divide_wf mul_bounds_1a nat_plus_subtype_nat le_wf set-value-type equal_wf istype-int int-value-type square-between-lemma2 subtype_base_sq set_subtype_base int_subtype_base qless_wf qsub_wf qdiv_wf subtype_rel_set rationals_wf int-subtype-rationals less_than_wf int_nzero-rational nat_plus_inc_int_nzero qmul_wf qadd_wf qle_wf nat_plus_wf div_rem_sum div_bounds_1 rem_bounds_1 nat_plus_properties nat_properties full-omega-unsat intformand_wf intformeq_wf itermVar_wf itermConstant_wf intformless_wf int_formula_prop_and_lemma istype-void int_formula_prop_eq_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_less_lemma int_formula_prop_wf qmul_preserves_qle2 qle-int decidable__le intformnot_wf intformle_wf int_formula_prop_not_lemma int_formula_prop_le_lemma qle_witness squash_wf true_wf qmul-qdiv-cancel subtype_rel_self iff_weakening_equal qmul_preserves_qless qless-int decidable__lt qmul_over_plus_qrng qmul_over_minus_qrng qmul_comm_qrng qadd_comm_q qmul-qdiv-cancel3 qless_functionality_wrt_implies_1 qle_weakening_eq_qorder qmul_functionality_wrt_qle qmul-mul itermAdd_wf itermMultiply_wf int_term_value_add_lemma int_term_value_mul_lemma qadd-add qless_witness qmul_preserves_qle qmul_one_qrng qless_transitivity_2_qorder
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt cut introduction extract_by_obid hypothesis sqequalHypSubstitution isectElimination thin dependent_set_memberEquality_alt multiplyEquality setElimination rename hypothesisEquality applyEquality sqequalRule universeIsType natural_numberEquality cutEval equalityTransitivity equalitySymmetry equalityIsType1 inhabitedIsType lambdaEquality_alt independent_isectElimination intEquality dependent_functionElimination instantiate cumulativity productElimination because_Cache independent_functionElimination productIsType remainderEquality approximateComputation dependent_pairFormation_alt int_eqEquality isect_memberEquality_alt voidElimination independent_pairFormation equalityIsType4 baseApply closedConclusion baseClosed divideEquality addEquality unionElimination isect_memberFormation_alt imageElimination imageMemberEquality universeEquality minusEquality

Latex:
\mforall{}a:\mBbbN{}.  \mforall{}b,n:\mBbbN{}\msupplus{}.    (\mexists{}q:\mBbbQ{}  [((a/b)  -  (1/n)  <  q  *  q  \mwedge{}  q  *  q  <  (a/b)  +  (1/n)  \mwedge{}  (0  \mleq{}  q))])



Date html generated: 2019_10_16-PM-00_38_04
Last ObjectModification: 2018_10_10-AM-11_04_39

Theory : rationals


Home Index