Nuprl Lemma : qabs-as-qmax
∀[q:ℚ]. (|q| = qmax(q;-(q)) ∈ ℚ)
Proof
Definitions occuring in Statement : 
qabs: |r|
, 
qmax: qmax(x;y)
, 
qmul: r * s
, 
rationals: ℚ
, 
uall: ∀[x:A]. B[x]
, 
minus: -n
, 
natural_number: $n
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
qmax: qmax(x;y)
, 
qabs: |r|
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
callbyvalueall: callbyvalueall, 
has-value: (a)↓
, 
has-valueall: has-valueall(a)
, 
subtype_rel: A ⊆r B
, 
guard: {T}
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
true: True
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
qeq: qeq(r;s)
, 
evalall: evalall(t)
, 
ifthenelse: if b then t else f fi 
, 
btrue: tt
, 
eq_int: (i =z j)
, 
bfalse: ff
, 
assert: ↑b
, 
false: False
, 
prop: ℙ
, 
qle: r ≤ s
, 
grp_leq: a ≤ b
, 
infix_ap: x f y
, 
grp_le: ≤b
, 
pi1: fst(t)
, 
pi2: snd(t)
, 
qadd_grp: <ℚ+>
, 
q_le: q_le(r;s)
, 
qdiv: (r/s)
, 
qmul: r * s
, 
qinv: 1/r
, 
bor: p ∨bq
, 
qpositive: qpositive(r)
, 
qsub: r - s
, 
qadd: r + s
, 
band: p ∧b q
, 
lt_int: i <z j
, 
qless: r < s
, 
grp_lt: a < b
, 
set_lt: a <p b
, 
set_blt: a <b b
, 
set_le: ≤b
, 
oset_of_ocmon: g↓oset
, 
dset_of_mon: g↓set
, 
bnot: ¬bb
, 
all: ∀x:A. B[x]
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
squash: ↓T
Lemmas referenced : 
valueall-type-has-valueall, 
rationals_wf, 
rationals-valueall-type, 
evalall-reduce, 
qpositive_wf, 
bool_wf, 
equal-wf-T-base, 
assert_wf, 
qless_wf, 
int-subtype-rationals, 
q_le_wf, 
qmul_wf, 
qle_wf, 
qadd_preserves_qle, 
qadd_wf, 
qmul_preserves_qle2, 
qdiv_wf, 
assert-qeq, 
equal-wf-base, 
qle_witness, 
bnot_wf, 
not_wf, 
qle_complement_qorder, 
qless_complement_qorder, 
qadd_preserves_qless, 
qmul_preserves_qless, 
qless_witness, 
uiff_transitivity, 
eqtt_to_assert, 
assert-qpositive, 
iff_transitivity, 
iff_weakening_uiff, 
eqff_to_assert, 
assert_of_bnot, 
equal_wf, 
uiff_transitivity2, 
assert-q_le-eq, 
squash_wf, 
true_wf, 
qinverse_q, 
qmul_ident, 
q_distrib, 
iff_weakening_equal, 
qmul_zero_qrng, 
qmul_ac_1_qrng, 
qmul-qdiv-cancel3, 
qmul_one_qrng, 
qless_transitivity_2_qorder, 
qless_irreflexivity
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
cut, 
sqequalRule, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesis, 
independent_isectElimination, 
hypothesisEquality, 
callbyvalueReduce, 
equalityTransitivity, 
equalitySymmetry, 
baseClosed, 
natural_numberEquality, 
applyEquality, 
because_Cache, 
minusEquality, 
productElimination, 
lambdaFormation, 
independent_pairFormation, 
voidElimination, 
independent_functionElimination, 
unionElimination, 
equalityElimination, 
impliesFunctionality, 
dependent_functionElimination, 
lambdaEquality, 
imageElimination, 
universeEquality, 
imageMemberEquality
Latex:
\mforall{}[q:\mBbbQ{}].  (|q|  =  qmax(q;-(q)))
Date html generated:
2018_05_21-PM-11_57_58
Last ObjectModification:
2017_07_26-PM-06_47_48
Theory : rationals
Home
Index