Nuprl Lemma : qabs-as-qmax

[q:ℚ]. (|q| qmax(q;-(q)) ∈ ℚ)


Proof




Definitions occuring in Statement :  qabs: |r| qmax: qmax(x;y) qmul: s rationals: uall: [x:A]. B[x] minus: -n natural_number: $n equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] qmax: qmax(x;y) qabs: |r| member: t ∈ T uimplies: supposing a callbyvalueall: callbyvalueall has-value: (a)↓ has-valueall: has-valueall(a) subtype_rel: A ⊆B guard: {T} uiff: uiff(P;Q) and: P ∧ Q true: True not: ¬A implies:  Q qeq: qeq(r;s) evalall: evalall(t) ifthenelse: if then else fi  btrue: tt eq_int: (i =z j) bfalse: ff assert: b false: False prop: qle: r ≤ s grp_leq: a ≤ b infix_ap: y grp_le: b pi1: fst(t) pi2: snd(t) qadd_grp: <ℚ+> q_le: q_le(r;s) qdiv: (r/s) qmul: s qinv: 1/r bor: p ∨bq qpositive: qpositive(r) qsub: s qadd: s band: p ∧b q lt_int: i <j qless: r < s grp_lt: a < b set_lt: a <b set_blt: a <b b set_le: b oset_of_ocmon: g↓oset dset_of_mon: g↓set bnot: ¬bb all: x:A. B[x] bool: 𝔹 unit: Unit it: iff: ⇐⇒ Q rev_implies:  Q squash: T
Lemmas referenced :  valueall-type-has-valueall rationals_wf rationals-valueall-type evalall-reduce qpositive_wf bool_wf equal-wf-T-base assert_wf qless_wf int-subtype-rationals q_le_wf qmul_wf qle_wf qadd_preserves_qle qadd_wf qmul_preserves_qle2 qdiv_wf assert-qeq equal-wf-base qle_witness bnot_wf not_wf qle_complement_qorder qless_complement_qorder qadd_preserves_qless qmul_preserves_qless qless_witness uiff_transitivity eqtt_to_assert assert-qpositive iff_transitivity iff_weakening_uiff eqff_to_assert assert_of_bnot equal_wf uiff_transitivity2 assert-q_le-eq squash_wf true_wf qinverse_q qmul_ident q_distrib iff_weakening_equal qmul_zero_qrng qmul_ac_1_qrng qmul-qdiv-cancel3 qmul_one_qrng qless_transitivity_2_qorder qless_irreflexivity
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation cut sqequalRule introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesis independent_isectElimination hypothesisEquality callbyvalueReduce equalityTransitivity equalitySymmetry baseClosed natural_numberEquality applyEquality because_Cache minusEquality productElimination lambdaFormation independent_pairFormation voidElimination independent_functionElimination unionElimination equalityElimination impliesFunctionality dependent_functionElimination lambdaEquality imageElimination universeEquality imageMemberEquality

Latex:
\mforall{}[q:\mBbbQ{}].  (|q|  =  qmax(q;-(q)))



Date html generated: 2018_05_21-PM-11_57_58
Last ObjectModification: 2017_07_26-PM-06_47_48

Theory : rationals


Home Index