Nuprl Lemma : normalize-constraints-eq

[k:ℕ]. ∀[A:(ℕ ⟶ ℚ × ℤList].  (normalize-constraints(k;A) A ∈ ((ℕ ⟶ ℚ × ℤList))


Proof




Definitions occuring in Statement :  normalize-constraints: normalize-constraints(k;A) rationals: list: List nat: uall: [x:A]. B[x] function: x:A ⟶ B[x] product: x:A × B[x] int: equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a all: x:A. B[x] implies:  Q prop: exists: x:A. B[x] nat: le: A ≤ B and: P ∧ Q less_than': less_than'(a;b) false: False not: ¬A squash: T normalize-constraints: normalize-constraints(k;A) so_lambda: λ2x.t[x] so_apply: x[s] callbyvalueall: callbyvalueall has-value: (a)↓ has-valueall: has-valueall(a)
Lemmas referenced :  evalall-reduce int-valueall-type function-valueall-type product-valueall-type list-valueall-type valueall-type-has-valueall value-type_wf rationals-value-type le_wf false_wf list_wf l_member_wf normalize-constraint-eq normalize-constraint_wf rationals_wf nat_wf trivial_map
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin productEquality functionEquality hypothesis intEquality hypothesisEquality lambdaEquality independent_isectElimination lambdaFormation sqequalRule because_Cache isect_memberEquality axiomEquality equalityTransitivity equalitySymmetry dependent_pairFormation dependent_set_memberEquality natural_numberEquality independent_pairFormation imageMemberEquality baseClosed independent_functionElimination callbyvalueReduce

Latex:
\mforall{}[k:\mBbbN{}].  \mforall{}[A:(\mBbbN{}  {}\mrightarrow{}  \mBbbQ{}  \mtimes{}  \mBbbZ{})  List].    (normalize-constraints(k;A)  =  A)



Date html generated: 2016_05_15-PM-11_24_25
Last ObjectModification: 2016_01_16-PM-09_15_00

Theory : rationals


Home Index