Nuprl Lemma : normalize-constraint-eq
∀[k:ℕ]. ∀[A:ℕ ⟶ ℚ × ℤ].  (normalize-constraint(k;A) = A ∈ (ℕ ⟶ ℚ × ℤ))
Proof
Definitions occuring in Statement : 
normalize-constraint: normalize-constraint(k;p)
, 
rationals: ℚ
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
function: x:A ⟶ B[x]
, 
product: x:A × B[x]
, 
int: ℤ
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
normalize-constraint: normalize-constraint(k;p)
, 
has-value: (a)↓
, 
uimplies: b supposing a
, 
nat: ℕ
, 
subtype_rel: A ⊆r B
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
le: A ≤ B
, 
and: P ∧ Q
, 
less_than': less_than'(a;b)
, 
false: False
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
all: ∀x:A. B[x]
, 
callbyvalueall: callbyvalueall, 
has-valueall: has-valueall(a)
, 
select?: as[i]?a
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
uiff: uiff(P;Q)
, 
ifthenelse: if b then t else f fi 
, 
bfalse: ff
, 
guard: {T}
, 
top: Top
, 
squash: ↓T
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
true: True
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
ge: i ≥ j 
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
Lemmas referenced : 
nat_wf, 
rationals_wf, 
value-type-has-value, 
int-value-type, 
valueall-type-has-valueall, 
list_wf, 
list-valueall-type, 
rationals-valueall-type, 
map_wf, 
int_seg_wf, 
subtype_rel_dep_function, 
int_seg_subtype_nat, 
false_wf, 
subtype_rel_self, 
upto_wf, 
evalall-reduce, 
lt_int_wf, 
length_wf, 
bool_wf, 
equal-wf-T-base, 
assert_wf, 
less_than_wf, 
le_int_wf, 
le_wf, 
bnot_wf, 
uiff_transitivity, 
eqtt_to_assert, 
assert_of_lt_int, 
eqff_to_assert, 
assert_functionality_wrt_uiff, 
bnot_of_lt_int, 
assert_of_le_int, 
equal_wf, 
length-map, 
squash_wf, 
true_wf, 
map_select, 
lelt_wf, 
iff_weakening_equal, 
non_neg_length, 
map_length, 
nat_properties, 
decidable__le, 
select_wf, 
length_wf_nat, 
int_seg_properties, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
intformnot_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_wf, 
select_upto, 
length_upto
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
hypothesis, 
productEquality, 
functionEquality, 
extract_by_obid, 
thin, 
intEquality, 
sqequalRule, 
sqequalHypSubstitution, 
isect_memberEquality, 
isectElimination, 
hypothesisEquality, 
axiomEquality, 
because_Cache, 
productElimination, 
callbyvalueReduce, 
independent_isectElimination, 
natural_numberEquality, 
setElimination, 
rename, 
applyEquality, 
lambdaEquality, 
independent_pairFormation, 
lambdaFormation, 
independent_pairEquality, 
functionExtensionality, 
equalityTransitivity, 
equalitySymmetry, 
baseClosed, 
unionElimination, 
equalityElimination, 
independent_functionElimination, 
dependent_functionElimination, 
voidElimination, 
voidEquality, 
imageElimination, 
universeEquality, 
dependent_set_memberEquality, 
imageMemberEquality, 
applyLambdaEquality, 
dependent_pairFormation, 
int_eqEquality, 
computeAll
Latex:
\mforall{}[k:\mBbbN{}].  \mforall{}[A:\mBbbN{}  {}\mrightarrow{}  \mBbbQ{}  \mtimes{}  \mBbbZ{}].    (normalize-constraint(k;A)  =  A)
Date html generated:
2018_05_22-AM-00_20_59
Last ObjectModification:
2017_07_26-PM-06_55_31
Theory : rationals
Home
Index