Nuprl Lemma : normalize-constraint-eq

[k:ℕ]. ∀[A:ℕ ⟶ ℚ × ℤ].  (normalize-constraint(k;A) A ∈ (ℕ ⟶ ℚ × ℤ))


Proof




Definitions occuring in Statement :  normalize-constraint: normalize-constraint(k;p) rationals: nat: uall: [x:A]. B[x] function: x:A ⟶ B[x] product: x:A × B[x] int: equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T normalize-constraint: normalize-constraint(k;p) has-value: (a)↓ uimplies: supposing a nat: subtype_rel: A ⊆B so_lambda: λ2x.t[x] so_apply: x[s] le: A ≤ B and: P ∧ Q less_than': less_than'(a;b) false: False not: ¬A implies:  Q prop: all: x:A. B[x] callbyvalueall: callbyvalueall has-valueall: has-valueall(a) select?: as[i]?a bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) ifthenelse: if then else fi  bfalse: ff guard: {T} top: Top squash: T int_seg: {i..j-} lelt: i ≤ j < k true: True iff: ⇐⇒ Q rev_implies:  Q ge: i ≥  decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x]
Lemmas referenced :  nat_wf rationals_wf value-type-has-value int-value-type valueall-type-has-valueall list_wf list-valueall-type rationals-valueall-type map_wf int_seg_wf subtype_rel_dep_function int_seg_subtype_nat false_wf subtype_rel_self upto_wf evalall-reduce lt_int_wf length_wf bool_wf equal-wf-T-base assert_wf less_than_wf le_int_wf le_wf bnot_wf uiff_transitivity eqtt_to_assert assert_of_lt_int eqff_to_assert assert_functionality_wrt_uiff bnot_of_lt_int assert_of_le_int equal_wf length-map squash_wf true_wf map_select lelt_wf iff_weakening_equal non_neg_length map_length nat_properties decidable__le select_wf length_wf_nat int_seg_properties satisfiable-full-omega-tt intformand_wf intformle_wf itermConstant_wf itermVar_wf intformnot_wf int_formula_prop_and_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_not_lemma int_formula_prop_wf select_upto length_upto
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut hypothesis productEquality functionEquality extract_by_obid thin intEquality sqequalRule sqequalHypSubstitution isect_memberEquality isectElimination hypothesisEquality axiomEquality because_Cache productElimination callbyvalueReduce independent_isectElimination natural_numberEquality setElimination rename applyEquality lambdaEquality independent_pairFormation lambdaFormation independent_pairEquality functionExtensionality equalityTransitivity equalitySymmetry baseClosed unionElimination equalityElimination independent_functionElimination dependent_functionElimination voidElimination voidEquality imageElimination universeEquality dependent_set_memberEquality imageMemberEquality applyLambdaEquality dependent_pairFormation int_eqEquality computeAll

Latex:
\mforall{}[k:\mBbbN{}].  \mforall{}[A:\mBbbN{}  {}\mrightarrow{}  \mBbbQ{}  \mtimes{}  \mBbbZ{}].    (normalize-constraint(k;A)  =  A)



Date html generated: 2018_05_22-AM-00_20_59
Last ObjectModification: 2017_07_26-PM-06_55_31

Theory : rationals


Home Index