Nuprl Lemma : q-ceil-property

[r:ℚ]. (q-ceil(r) 1 < r ∧ (r ≤ q-ceil(r)))


Proof




Definitions occuring in Statement :  q-ceil: q-ceil(r) qle: r ≤ s qless: r < s qsub: s rationals: uall: [x:A]. B[x] and: P ∧ Q natural_number: $n
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T q-ceil: q-ceil(r) so_lambda: λ2x.t[x] subtype_rel: A ⊆B and: P ∧ Q prop: so_apply: x[s] all: x:A. B[x] implies:  Q cand: c∧ B sq_stable: SqStable(P) squash: T
Lemmas referenced :  decidable__qle decidable__qless sq_stable_from_decidable sq_stable__and qsub-sub squash_wf rationals_wf qle_witness q-ceil_wf qsub_wf qless_witness equal_wf qle_wf int-subtype-rationals subtract_wf qless_wf and_wf set_wf rat-int-bound_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis intEquality sqequalRule lambdaEquality natural_numberEquality applyEquality because_Cache lambdaFormation setElimination rename equalityTransitivity equalitySymmetry dependent_functionElimination independent_functionElimination productElimination independent_pairEquality isect_memberEquality independent_pairFormation imageMemberEquality baseClosed imageElimination

Latex:
\mforall{}[r:\mBbbQ{}].  (q-ceil(r)  -  1  <  r  \mwedge{}  (r  \mleq{}  q-ceil(r)))



Date html generated: 2016_05_15-PM-11_35_03
Last ObjectModification: 2016_01_16-PM-09_12_33

Theory : rationals


Home Index