Nuprl Lemma : q-ceil-property
∀[r:ℚ]. (q-ceil(r) - 1 < r ∧ (r ≤ q-ceil(r)))
Proof
Definitions occuring in Statement : 
q-ceil: q-ceil(r)
, 
qle: r ≤ s
, 
qless: r < s
, 
qsub: r - s
, 
rationals: ℚ
, 
uall: ∀[x:A]. B[x]
, 
and: P ∧ Q
, 
natural_number: $n
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
q-ceil: q-ceil(r)
, 
so_lambda: λ2x.t[x]
, 
subtype_rel: A ⊆r B
, 
and: P ∧ Q
, 
prop: ℙ
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
cand: A c∧ B
, 
sq_stable: SqStable(P)
, 
squash: ↓T
Lemmas referenced : 
decidable__qle, 
decidable__qless, 
sq_stable_from_decidable, 
sq_stable__and, 
qsub-sub, 
squash_wf, 
rationals_wf, 
qle_witness, 
q-ceil_wf, 
qsub_wf, 
qless_witness, 
equal_wf, 
qle_wf, 
int-subtype-rationals, 
subtract_wf, 
qless_wf, 
and_wf, 
set_wf, 
rat-int-bound_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
intEquality, 
sqequalRule, 
lambdaEquality, 
natural_numberEquality, 
applyEquality, 
because_Cache, 
lambdaFormation, 
setElimination, 
rename, 
equalityTransitivity, 
equalitySymmetry, 
dependent_functionElimination, 
independent_functionElimination, 
productElimination, 
independent_pairEquality, 
isect_memberEquality, 
independent_pairFormation, 
imageMemberEquality, 
baseClosed, 
imageElimination
Latex:
\mforall{}[r:\mBbbQ{}].  (q-ceil(r)  -  1  <  r  \mwedge{}  (r  \mleq{}  q-ceil(r)))
Date html generated:
2016_05_15-PM-11_35_03
Last ObjectModification:
2016_01_16-PM-09_12_33
Theory : rationals
Home
Index