Nuprl Lemma : q-ceil_functionality
∀[a,b:ℚ].  q-ceil(a) ≤ q-ceil(b) supposing a ≤ b
Proof
Definitions occuring in Statement : 
q-ceil: q-ceil(r)
, 
qle: r ≤ s
, 
rationals: ℚ
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
all: ∀x:A. B[x]
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
implies: P 
⇒ Q
, 
not: ¬A
, 
top: Top
, 
prop: ℙ
, 
subtype_rel: A ⊆r B
, 
guard: {T}
Lemmas referenced : 
qless_irreflexivity, 
qless_transitivity_2_qorder, 
qsub_wf, 
rationals_wf, 
qle_wf, 
int-subtype-rationals, 
qle_witness, 
qsub-sub, 
int_formula_prop_wf, 
int_term_value_constant_lemma, 
int_term_value_subtract_lemma, 
int_term_value_var_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_and_lemma, 
itermConstant_wf, 
itermSubtract_wf, 
itermVar_wf, 
intformle_wf, 
intformnot_wf, 
intformand_wf, 
satisfiable-full-omega-tt, 
subtract_wf, 
decidable__le, 
q-ceil-property, 
q-ceil_wf, 
qle-int
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
productElimination, 
independent_isectElimination, 
dependent_functionElimination, 
unionElimination, 
natural_numberEquality, 
because_Cache, 
dependent_pairFormation, 
lambdaEquality, 
int_eqEquality, 
intEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
sqequalRule, 
independent_pairFormation, 
computeAll, 
applyEquality, 
independent_functionElimination, 
equalityTransitivity, 
equalitySymmetry
Latex:
\mforall{}[a,b:\mBbbQ{}].    q-ceil(a)  \mleq{}  q-ceil(b)  supposing  a  \mleq{}  b
Date html generated:
2016_05_15-PM-11_35_09
Last ObjectModification:
2016_01_16-PM-09_12_47
Theory : rationals
Home
Index