Nuprl Lemma : q-ceil_functionality

[a,b:ℚ].  q-ceil(a) ≤ q-ceil(b) supposing a ≤ b


Proof




Definitions occuring in Statement :  q-ceil: q-ceil(r) qle: r ≤ s rationals: uimplies: supposing a uall: [x:A]. B[x]
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a uiff: uiff(P;Q) and: P ∧ Q all: x:A. B[x] decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False implies:  Q not: ¬A top: Top prop: subtype_rel: A ⊆B guard: {T}
Lemmas referenced :  qless_irreflexivity qless_transitivity_2_qorder qsub_wf rationals_wf qle_wf int-subtype-rationals qle_witness qsub-sub int_formula_prop_wf int_term_value_constant_lemma int_term_value_subtract_lemma int_term_value_var_lemma int_formula_prop_le_lemma int_formula_prop_not_lemma int_formula_prop_and_lemma itermConstant_wf itermSubtract_wf itermVar_wf intformle_wf intformnot_wf intformand_wf satisfiable-full-omega-tt subtract_wf decidable__le q-ceil-property q-ceil_wf qle-int
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis productElimination independent_isectElimination dependent_functionElimination unionElimination natural_numberEquality because_Cache dependent_pairFormation lambdaEquality int_eqEquality intEquality isect_memberEquality voidElimination voidEquality sqequalRule independent_pairFormation computeAll applyEquality independent_functionElimination equalityTransitivity equalitySymmetry

Latex:
\mforall{}[a,b:\mBbbQ{}].    q-ceil(a)  \mleq{}  q-ceil(b)  supposing  a  \mleq{}  b



Date html generated: 2016_05_15-PM-11_35_09
Last ObjectModification: 2016_01_16-PM-09_12_47

Theory : rationals


Home Index