Nuprl Lemma : qmax-list-member

L:ℚ List. (qmax-list(L) ∈ L) supposing 0 < ||L||


Proof




Definitions occuring in Statement :  qmax-list: qmax-list(L) rationals: l_member: (x ∈ l) length: ||as|| list: List less_than: a < b uimplies: supposing a all: x:A. B[x] natural_number: $n
Definitions unfolded in proof :  all: x:A. B[x] uimplies: supposing a member: t ∈ T uall: [x:A]. B[x] qmax-list: qmax-list(L) so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] implies:  Q qmax: qmax(x;y) bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) and: P ∧ Q ifthenelse: if then else fi  guard: {T} or: P ∨ Q prop: bfalse: ff exists: x:A. B[x] sq_type: SQType(T) bnot: ¬bb assert: b false: False
Lemmas referenced :  member-less_than length_wf rationals_wf combine-list-member qmax_wf q_le_wf bool_wf eqtt_to_assert equal_wf eqff_to_assert bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot less_than_wf list_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation isect_memberFormation cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin natural_numberEquality hypothesis hypothesisEquality independent_isectElimination rename dependent_functionElimination sqequalRule lambdaEquality independent_functionElimination unionElimination equalityElimination equalityTransitivity equalitySymmetry productElimination inrFormation dependent_pairFormation promote_hyp instantiate cumulativity because_Cache voidElimination inlFormation

Latex:
\mforall{}L:\mBbbQ{}  List.  (qmax-list(L)  \mmember{}  L)  supposing  0  <  ||L||



Date html generated: 2018_05_21-PM-11_50_18
Last ObjectModification: 2017_07_26-PM-06_43_58

Theory : rationals


Home Index