Nuprl Lemma : qmin-eq-iff-cases

q,r,s:ℚ.  uiff(qmin(q;r) s ∈ ℚ;((q ≤ r) ∧ (s q ∈ ℚ)) ∨ ((r ≤ q) ∧ (s r ∈ ℚ)))


Proof




Definitions occuring in Statement :  qmin: qmin(x;y) qle: r ≤ s rationals: uiff: uiff(P;Q) all: x:A. B[x] or: P ∨ Q and: P ∧ Q equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] qmin: qmin(x;y) member: t ∈ T uall: [x:A]. B[x] implies:  Q bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a prop: guard: {T} iff: ⇐⇒ Q ifthenelse: if then else fi  or: P ∨ Q cand: c∧ B false: False bfalse: ff exists: x:A. B[x] sq_type: SQType(T) bnot: ¬bb assert: b not: ¬A rev_implies:  Q
Lemmas referenced :  q_le_wf eqtt_to_assert assert-q_le-eq iff_weakening_equal qless_trichot_qorder qless_transitivity_2_qorder qless_irreflexivity eqff_to_assert bool_cases_sqequal subtype_base_sq bool_wf bool_subtype_base assert-bnot qle_wf qle_weakening_lt_qorder qle_weakening_eq_qorder rationals_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis inhabitedIsType unionElimination equalityElimination equalityTransitivity equalitySymmetry productElimination independent_isectElimination independent_functionElimination sqequalRule dependent_functionElimination independent_pairFormation isect_memberFormation_alt axiomEquality rename inlFormation_alt because_Cache voidElimination dependent_pairFormation_alt equalityIstype promote_hyp instantiate cumulativity universeIsType inrFormation_alt

Latex:
\mforall{}q,r,s:\mBbbQ{}.    uiff(qmin(q;r)  =  s;((q  \mleq{}  r)  \mwedge{}  (s  =  q))  \mvee{}  ((r  \mleq{}  q)  \mwedge{}  (s  =  r)))



Date html generated: 2020_05_20-AM-09_16_47
Last ObjectModification: 2019_11_02-PM-00_43_22

Theory : rationals


Home Index