Nuprl Lemma : qround_wf

[r:ℚ]. ∀[k:ℕ+].  (qround(r;k) ∈ ℚ)


Proof




Definitions occuring in Statement :  qround: qround(r;k) rationals: nat_plus: + uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T qround: qround(r;k) nat_plus: + less_than: a < b squash: T less_than': less_than'(a;b) true: True and: P ∧ Q prop: int_nzero: -o nequal: a ≠ b ∈  not: ¬A implies:  Q uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False all: x:A. B[x] top: Top
Lemmas referenced :  rationals_wf nat_plus_wf nequal_wf equal_wf int_formula_prop_wf int_formula_prop_less_lemma int_term_value_var_lemma int_term_value_constant_lemma int_term_value_mul_lemma int_formula_prop_eq_lemma int_formula_prop_and_lemma intformless_wf itermVar_wf itermConstant_wf itermMultiply_wf intformeq_wf intformand_wf satisfiable-full-omega-tt nat_plus_properties less_than_wf mul_nat_plus rounded-numerator_wf mk-rational_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality dependent_set_memberEquality natural_numberEquality independent_pairFormation imageMemberEquality baseClosed hypothesis multiplyEquality setElimination rename lambdaFormation independent_isectElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality dependent_functionElimination isect_memberEquality voidElimination voidEquality computeAll axiomEquality equalityTransitivity equalitySymmetry because_Cache

Latex:
\mforall{}[r:\mBbbQ{}].  \mforall{}[k:\mBbbN{}\msupplus{}].    (qround(r;k)  \mmember{}  \mBbbQ{})



Date html generated: 2016_05_15-PM-10_38_01
Last ObjectModification: 2016_01_16-PM-09_37_01

Theory : rationals


Home Index