Nuprl Lemma : rounded-numerator_wf

[r:ℚ]. ∀[k:ℕ+].  (rounded-numerator(r;k) ∈ ℤ)


Proof




Definitions occuring in Statement :  rounded-numerator: rounded-numerator(r;k) rationals: nat_plus: + uall: [x:A]. B[x] member: t ∈ T int:
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T rationals: quotient: x,y:A//B[x; y] and: P ∧ Q all: x:A. B[x] implies:  Q prop: qeq: qeq(r;s) uimplies: supposing a so_lambda: λ2x.t[x] so_apply: x[s] int_nzero: -o callbyvalueall: callbyvalueall has-value: (a)↓ has-valueall: has-valueall(a) rounded-numerator: rounded-numerator(r;k) b-union: A ⋃ B tunion: x:A.B[x] bool: 𝔹 unit: Unit ifthenelse: if then else fi  pi2: snd(t) btrue: tt uiff: uiff(P;Q) nat_plus: + bfalse: ff sq_type: SQType(T) guard: {T} nequal: a ≠ b ∈  decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False not: ¬A top: Top
Lemmas referenced :  b-union_wf int_nzero_wf equal-wf-T-base bool_wf qeq_wf equal_wf equal-wf-base nat_plus_wf rationals_wf valueall-type-has-valueall bunion-valueall-type int-valueall-type product-valueall-type set-valueall-type nequal_wf evalall-reduce eqtt_to_assert assert_of_eq_int and_wf subtype_base_sq int_subtype_base int_nzero_properties nat_plus_properties decidable__equal_int satisfiable-full-omega-tt intformnot_wf intformeq_wf itermMultiply_wf itermVar_wf int_formula_prop_not_lemma int_formula_prop_eq_lemma int_term_value_mul_lemma int_term_value_var_lemma int_formula_prop_wf div-cancel mul_preserves_eq mul_nzero intformand_wf int_formula_prop_and_lemma mul-associates mul-commutes mul-swap div-mul-cancel
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalHypSubstitution pointwiseFunctionalityForEquality intEquality sqequalRule pertypeElimination productElimination thin equalityTransitivity hypothesis equalitySymmetry extract_by_obid isectElimination productEquality lambdaFormation because_Cache hypothesisEquality baseClosed dependent_functionElimination independent_functionElimination axiomEquality isect_memberEquality independent_isectElimination lambdaEquality natural_numberEquality callbyvalueReduce imageElimination unionElimination equalityElimination isintReduceTrue addLevel levelHypothesis dependent_set_memberEquality independent_pairFormation applyLambdaEquality setElimination rename multiplyEquality instantiate cumulativity dependent_pairFormation int_eqEquality voidElimination voidEquality computeAll divideEquality

Latex:
\mforall{}[r:\mBbbQ{}].  \mforall{}[k:\mBbbN{}\msupplus{}].    (rounded-numerator(r;k)  \mmember{}  \mBbbZ{})



Date html generated: 2018_05_21-PM-11_44_18
Last ObjectModification: 2017_07_26-PM-06_43_00

Theory : rationals


Home Index