Nuprl Lemma : qtruncate_wf

[q:ℚ]. ∀[N:ℕ+].  (qtruncate(q;N) ∈ ℚ)


Proof




Definitions occuring in Statement :  qtruncate: qtruncate(q;N) rationals: nat_plus: + uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T qtruncate: qtruncate(q;N) subtype_rel: A ⊆B nat_plus: + so_lambda: λ2x.t[x] so_apply: x[s] uimplies: supposing a int_nzero: -o prop: all: x:A. B[x] implies:  Q nequal: a ≠ b ∈  not: ¬A false: False guard: {T} satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] top: Top and: P ∧ Q
Lemmas referenced :  nat_plus_wf equal_wf int_formula_prop_wf int_formula_prop_less_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_eq_lemma int_formula_prop_and_lemma intformless_wf itermConstant_wf itermVar_wf intformeq_wf intformand_wf satisfiable-full-omega-tt nat_plus_properties nequal_wf subtype_rel_sets int_nzero-rational int-subtype-rationals less_than_wf rationals_wf subtype_rel_set qmul_wf q-ceil_wf qdiv_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality applyEquality intEquality hypothesis lambdaEquality natural_numberEquality independent_isectElimination because_Cache setElimination rename setEquality lambdaFormation dependent_pairFormation int_eqEquality dependent_functionElimination isect_memberEquality voidElimination voidEquality independent_pairFormation computeAll independent_functionElimination axiomEquality equalityTransitivity equalitySymmetry

Latex:
\mforall{}[q:\mBbbQ{}].  \mforall{}[N:\mBbbN{}\msupplus{}].    (qtruncate(q;N)  \mmember{}  \mBbbQ{})



Date html generated: 2016_05_15-PM-11_35_21
Last ObjectModification: 2016_01_16-PM-09_12_01

Theory : rationals


Home Index