Nuprl Lemma : qv-constrained-no-sup_wf
∀[n:ℕ]. ∀[S,lfs:q-linear-form(n) List].  qv-constrained-no-sup(n;S;lfs) ∈ ℙ supposing 0 < ||lfs||
Proof
Definitions occuring in Statement : 
qv-constrained-no-sup: qv-constrained-no-sup(n;S;lfs)
, 
q-linear-form: q-linear-form(n)
, 
length: ||as||
, 
list: T List
, 
nat: ℕ
, 
less_than: a < b
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
member: t ∈ T
, 
natural_number: $n
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
qv-constrained-no-sup: qv-constrained-no-sup(n;S;lfs)
, 
prop: ℙ
, 
and: P ∧ Q
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
exists: ∃x:A. B[x]
, 
implies: P 
⇒ Q
, 
all: ∀x:A. B[x]
Lemmas referenced : 
exists_wf, 
qvn_wf, 
qv-constrained_wf, 
all_wf, 
qless_wf, 
qlfs-min-val_wf, 
less_than_wf, 
length_wf, 
q-linear-form_wf, 
list_wf, 
nat_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
productEquality, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
lambdaEquality, 
because_Cache, 
functionEquality, 
independent_isectElimination, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
natural_numberEquality, 
isect_memberEquality
Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[S,lfs:q-linear-form(n)  List].    qv-constrained-no-sup(n;S;lfs)  \mmember{}  \mBbbP{}  supposing  0  <  ||lfs||
Date html generated:
2016_05_15-PM-11_23_11
Last ObjectModification:
2015_12_27-PM-07_31_30
Theory : rationals
Home
Index