Nuprl Lemma : sb-equipollent

List {p:ℕ+ × ℕ+let m,n in gcd(m;n) 1 ∈ ℤ


Proof




Definitions occuring in Statement :  equipollent: B list: List gcd: gcd(a;b) int_seg: {i..j-} nat_plus: + set: {x:A| B[x]}  spread: spread def product: x:A × B[x] natural_number: $n int: equal: t ∈ T
Definitions unfolded in proof :  equipollent: B exists: x:A. B[x] member: t ∈ T uall: [x:A]. B[x] biject: Bij(A;B;f) and: P ∧ Q inject: Inj(A;B;f) all: x:A. B[x] implies:  Q prop: nat_plus: + surject: Surj(A;B;f) so_lambda: λ2x.t[x] so_apply: x[s] uimplies: supposing a sq_type: SQType(T) guard: {T} so_lambda: λ2y.t[x; y] so_apply: x[s1;s2]
Lemmas referenced :  sbdecode_wf_gcd list_wf int_seg_wf equal_wf nat_plus_wf equal-wf-T-base gcd_wf set_wf biject_wf sbcode_wf sbcode-decode sbdecode-code subtype_base_sq int_subtype_base div-one spread_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity dependent_pairFormation lambdaEquality cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis natural_numberEquality independent_pairFormation lambdaFormation sqequalRule setEquality productEquality spreadEquality productElimination independent_pairEquality intEquality dependent_functionElimination setElimination rename baseClosed functionExtensionality applyEquality applyLambdaEquality instantiate cumulativity independent_isectElimination equalityTransitivity equalitySymmetry independent_functionElimination dependent_set_memberEquality because_Cache universeEquality

Latex:
\mBbbN{}2  List  \msim{}  \{p:\mBbbN{}\msupplus{}  \mtimes{}  \mBbbN{}\msupplus{}|  let  m,n  =  p  in  gcd(m;n)  =  1\} 



Date html generated: 2018_05_21-PM-11_40_33
Last ObjectModification: 2017_07_26-PM-06_42_51

Theory : rationals


Home Index