Nuprl Lemma : sbdecode-code

[m,n:ℕ+].  (sbdecode(sbcode(m;n)) ~ <m ÷ gcd(m;n), n ÷ gcd(m;n)>)


Proof




Definitions occuring in Statement :  sbdecode: sbdecode(L) sbcode: sbcode(m;n) gcd: gcd(a;b) nat_plus: + uall: [x:A]. B[x] pair: <a, b> divide: n ÷ m sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] nat: implies:  Q false: False ge: i ≥  uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] not: ¬A top: Top and: P ∧ Q prop: guard: {T} int_seg: {i..j-} lelt: i ≤ j < k decidable: Dec(P) or: P ∨ Q subtype_rel: A ⊆B le: A ≤ B less_than': less_than'(a;b) sbcode: sbcode(m;n) bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) less_than: a < b true: True squash: T sbdecode: sbdecode(L) bfalse: ff sq_type: SQType(T) bnot: ¬bb ifthenelse: if then else fi  assert: b nat_plus: + int_nzero: -o nequal: a ≠ b ∈  iff: ⇐⇒ Q rev_implies:  Q subtract: m so_lambda: λ2x.t[x] so_apply: x[s]
Lemmas referenced :  nat_properties satisfiable-full-omega-tt intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf less_than_wf nat_wf int_seg_wf int_seg_properties decidable__le subtract_wf intformnot_wf itermSubtract_wf int_formula_prop_not_lemma int_term_value_subtract_lemma decidable__equal_int int_seg_subtype false_wf intformeq_wf int_formula_prop_eq_lemma le_wf lt_int_wf bool_wf eqtt_to_assert assert_of_lt_int top_wf reduce_cons_lemma eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot reduce_nil_lemma decidable__lt lelt_wf itermAdd_wf int_term_value_add_lemma nat_plus_subtype_nat nat_plus_properties nat_plus_wf gcd-positive int_subtype_base gcd_sym_nat gcd_subtract gcd_wf squash_wf true_wf add-div-when-divides equal-wf-base nequal_wf gcd_is_divisor_1 iff_weakening_equal minus-one-mul add-commutes minus-one-mul-top add-associates add-mul-special zero-mul zero-add divides_subtract gcd_is_divisor_2 subtract-add-cancel set_subtype_base gcd_eq_args div-self
Rules used in proof :  cut sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction thin lambdaFormation extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality hypothesis setElimination rename intWeakElimination natural_numberEquality independent_isectElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality dependent_functionElimination isect_memberEquality voidElimination voidEquality sqequalRule independent_pairFormation computeAll independent_functionElimination sqequalAxiom because_Cache productElimination unionElimination applyEquality equalityTransitivity equalitySymmetry applyLambdaEquality hypothesis_subsumption dependent_set_memberEquality equalityElimination lessCases imageMemberEquality baseClosed imageElimination promote_hyp instantiate cumulativity addEquality universeEquality baseApply closedConclusion divideEquality minusEquality

Latex:
\mforall{}[m,n:\mBbbN{}\msupplus{}].    (sbdecode(sbcode(m;n))  \msim{}  <m  \mdiv{}  gcd(m;n),  n  \mdiv{}  gcd(m;n)>)



Date html generated: 2018_05_21-PM-11_40_00
Last ObjectModification: 2017_07_26-PM-06_42_49

Theory : rationals


Home Index