Nuprl Lemma : gcd_subtract
∀a,b:ℕ.  gcd(a - b;b) ~ gcd(a;b) supposing b ≤ a
Proof
Definitions occuring in Statement : 
gcd: gcd(a;b)
, 
nat: ℕ
, 
uimplies: b supposing a
, 
le: A ≤ B
, 
all: ∀x:A. B[x]
, 
subtract: n - m
, 
sqequal: s ~ t
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
uimplies: b supposing a
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
nat: ℕ
, 
prop: ℙ
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
implies: P 
⇒ Q
, 
sq_type: SQType(T)
, 
guard: {T}
, 
exists: ∃x:A. B[x]
, 
squash: ↓T
, 
true: True
, 
subtype_rel: A ⊆r B
, 
rev_implies: P 
⇐ Q
, 
le: A ≤ B
, 
subtract: n - m
, 
top: Top
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
Lemmas referenced : 
subtype_base_sq, 
int_subtype_base, 
assoced_nelim, 
gcd_wf, 
subtract_wf, 
gcd-non-neg, 
subtract_nat_wf, 
le_wf, 
nat_wf, 
gcd_elim, 
assoced_wf, 
squash_wf, 
true_wf, 
istype-int, 
subtype_rel_self, 
iff_weakening_equal, 
gcd_unique, 
gcd_sat_pred, 
gcd_p_sym, 
gcd_p_shift, 
add-associates, 
istype-void, 
minus-one-mul, 
one-mul, 
add-commutes, 
add-mul-special, 
zero-mul, 
add-zero, 
set_subtype_base, 
gcd_p_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :lambdaFormation_alt, 
Error :isect_memberFormation_alt, 
introduction, 
cut, 
thin, 
instantiate, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
cumulativity, 
intEquality, 
independent_isectElimination, 
hypothesis, 
dependent_functionElimination, 
Error :dependent_set_memberEquality_alt, 
setElimination, 
rename, 
because_Cache, 
hypothesisEquality, 
Error :universeIsType, 
natural_numberEquality, 
productElimination, 
independent_functionElimination, 
equalityTransitivity, 
equalitySymmetry, 
axiomSqEquality, 
Error :inhabitedIsType, 
applyEquality, 
Error :lambdaEquality_alt, 
imageElimination, 
sqequalRule, 
imageMemberEquality, 
baseClosed, 
universeEquality, 
addEquality, 
multiplyEquality, 
hyp_replacement, 
Error :isect_memberEquality_alt, 
voidElimination, 
minusEquality, 
independent_pairFormation, 
Error :productIsType, 
Error :equalityIsType4, 
baseApply, 
closedConclusion, 
applyLambdaEquality
Latex:
\mforall{}a,b:\mBbbN{}.    gcd(a  -  b;b)  \msim{}  gcd(a;b)  supposing  b  \mleq{}  a
Date html generated:
2019_06_20-PM-02_27_04
Last ObjectModification:
2018_10_03-AM-10_23_49
Theory : num_thy_1
Home
Index