Nuprl Lemma : gcd_subtract

a,b:ℕ.  gcd(a b;b) gcd(a;b) supposing b ≤ a


Proof




Definitions occuring in Statement :  gcd: gcd(a;b) nat: uimplies: supposing a le: A ≤ B all: x:A. B[x] subtract: m sqequal: t
Definitions unfolded in proof :  all: x:A. B[x] uimplies: supposing a member: t ∈ T uall: [x:A]. B[x] nat: prop: iff: ⇐⇒ Q and: P ∧ Q implies:  Q sq_type: SQType(T) guard: {T} exists: x:A. B[x] squash: T true: True subtype_rel: A ⊆B rev_implies:  Q le: A ≤ B subtract: m top: Top so_lambda: λ2x.t[x] so_apply: x[s]
Lemmas referenced :  subtype_base_sq int_subtype_base assoced_nelim gcd_wf subtract_wf gcd-non-neg subtract_nat_wf le_wf nat_wf gcd_elim assoced_wf squash_wf true_wf istype-int subtype_rel_self iff_weakening_equal gcd_unique gcd_sat_pred gcd_p_sym gcd_p_shift add-associates istype-void minus-one-mul one-mul add-commutes add-mul-special zero-mul add-zero set_subtype_base gcd_p_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :lambdaFormation_alt,  Error :isect_memberFormation_alt,  introduction cut thin instantiate extract_by_obid sqequalHypSubstitution isectElimination cumulativity intEquality independent_isectElimination hypothesis dependent_functionElimination Error :dependent_set_memberEquality_alt,  setElimination rename because_Cache hypothesisEquality Error :universeIsType,  natural_numberEquality productElimination independent_functionElimination equalityTransitivity equalitySymmetry axiomSqEquality Error :inhabitedIsType,  applyEquality Error :lambdaEquality_alt,  imageElimination sqequalRule imageMemberEquality baseClosed universeEquality addEquality multiplyEquality hyp_replacement Error :isect_memberEquality_alt,  voidElimination minusEquality independent_pairFormation Error :productIsType,  Error :equalityIsType4,  baseApply closedConclusion applyLambdaEquality

Latex:
\mforall{}a,b:\mBbbN{}.    gcd(a  -  b;b)  \msim{}  gcd(a;b)  supposing  b  \mleq{}  a



Date html generated: 2019_06_20-PM-02_27_04
Last ObjectModification: 2018_10_03-AM-10_23_49

Theory : num_thy_1


Home Index