Nuprl Lemma : gcd_eq_args
∀a:ℤ. (gcd(a;a) ~ a)
Proof
Definitions occuring in Statement : 
gcd: gcd(a;b), 
all: ∀x:A. B[x], 
int: ℤ, 
sqequal: s ~ t
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
uimplies: b supposing a, 
gcd: gcd(a;b), 
implies: P ⇒ Q, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
uiff: uiff(P;Q), 
and: P ∧ Q, 
ifthenelse: if b then t else f fi , 
bfalse: ff, 
exists: ∃x:A. B[x], 
or: P ∨ Q, 
sq_type: SQType(T), 
guard: {T}, 
bnot: ¬bb, 
assert: ↑b, 
false: False, 
eq_int: (i =z j), 
int_nzero: ℤ-o, 
nequal: a ≠ b ∈ T , 
prop: ℙ, 
decidable: Dec(P), 
not: ¬A, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
top: Top
Lemmas referenced : 
subtype_base_sq, 
int_subtype_base, 
eq_int_wf, 
eqtt_to_assert, 
assert_of_eq_int, 
eqff_to_assert, 
bool_cases_sqequal, 
bool_wf, 
bool_subtype_base, 
assert-bnot, 
neg_assert_of_eq_int, 
istype-int, 
div_rem_sum, 
nequal_wf, 
div-self, 
decidable__equal_int, 
add-is-int-iff, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformeq_wf, 
itermVar_wf, 
itermConstant_wf, 
itermAdd_wf, 
itermMultiply_wf, 
int_formula_prop_and_lemma, 
istype-void, 
int_formula_prop_not_lemma, 
int_formula_prop_eq_lemma, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_term_value_add_lemma, 
int_term_value_mul_lemma, 
int_formula_prop_wf, 
false_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :lambdaFormation_alt, 
cut, 
thin, 
instantiate, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
cumulativity, 
intEquality, 
independent_isectElimination, 
hypothesis, 
sqequalRule, 
hypothesisEquality, 
natural_numberEquality, 
Error :inhabitedIsType, 
unionElimination, 
equalityElimination, 
equalityTransitivity, 
equalitySymmetry, 
productElimination, 
Error :dependent_pairFormation_alt, 
Error :equalityIstype, 
promote_hyp, 
dependent_functionElimination, 
independent_functionElimination, 
because_Cache, 
voidElimination, 
Error :dependent_set_memberEquality_alt, 
Error :universeIsType, 
pointwiseFunctionality, 
rename, 
baseApply, 
closedConclusion, 
baseClosed, 
approximateComputation, 
Error :lambdaEquality_alt, 
int_eqEquality, 
Error :isect_memberEquality_alt, 
independent_pairFormation
Latex:
\mforall{}a:\mBbbZ{}.  (gcd(a;a)  \msim{}  a)
Date html generated:
2019_06_20-PM-02_22_02
Last ObjectModification:
2019_03_06-AM-11_06_19
Theory : num_thy_1
Home
Index