Nuprl Lemma : sbcode-decode

[L:ℕList]. (let m,n sbdecode(L) in sbcode(m;n) L)


Proof




Definitions occuring in Statement :  sbdecode: sbdecode(L) sbcode: sbcode(m;n) list: List int_seg: {i..j-} uall: [x:A]. B[x] spread: spread def natural_number: $n sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] nat: implies:  Q false: False ge: i ≥  uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] not: ¬A top: Top and: P ∧ Q prop: subtype_rel: A ⊆B guard: {T} or: P ∨ Q sbdecode: sbdecode(L) reduce: reduce(f;k;as) list_ind: list_ind nil: [] it: cons: [a b] colength: colength(L) so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] decidable: Dec(P) so_lambda: λ2x.t[x] so_apply: x[s] sq_type: SQType(T) less_than: a < b squash: T less_than': less_than'(a;b) sbcode: sbcode(m;n) subtract: m int_seg: {i..j-} bool: 𝔹 unit: Unit btrue: tt uiff: uiff(P;Q) nat_plus: + true: True lelt: i ≤ j < k le: A ≤ B bfalse: ff bnot: ¬bb ifthenelse: if then else fi  assert: b nequal: a ≠ b ∈ 
Lemmas referenced :  nat_properties satisfiable-full-omega-tt intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf less_than_wf equal-wf-T-base nat_wf colength_wf_list int_seg_wf less_than_transitivity1 less_than_irreflexivity list_wf list-cases product_subtype_list spread_cons_lemma intformeq_wf itermAdd_wf int_formula_prop_eq_lemma int_term_value_add_lemma decidable__le intformnot_wf int_formula_prop_not_lemma le_wf equal_wf subtract_wf itermSubtract_wf int_term_value_subtract_lemma subtype_base_sq set_subtype_base int_subtype_base decidable__equal_int reduce_cons_lemma sbdecode_wf nat_plus_wf eq_int_wf bool_wf eqtt_to_assert assert_of_eq_int list_subtype_base lt_int_wf assert_of_lt_int top_wf cons_wf nat_plus_properties int_seg_properties false_wf lelt_wf eqff_to_assert bool_cases_sqequal bool_subtype_base assert-bnot neg_assert_of_eq_int add-subtract-cancel sbcode_wf add-associates minus-one-mul add-commutes add-mul-special zero-mul zero-add
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut thin lambdaFormation extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality hypothesis setElimination rename intWeakElimination natural_numberEquality independent_isectElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality dependent_functionElimination isect_memberEquality voidElimination voidEquality sqequalRule independent_pairFormation computeAll independent_functionElimination sqequalAxiom applyEquality because_Cache unionElimination promote_hyp hypothesis_subsumption productElimination equalityTransitivity equalitySymmetry applyLambdaEquality dependent_set_memberEquality addEquality baseClosed instantiate cumulativity imageElimination productEquality equalityElimination int_eqReduceTrueSq lessCases imageMemberEquality int_eqReduceFalseSq

Latex:
\mforall{}[L:\mBbbN{}2  List].  (let  m,n  =  sbdecode(L)  in  sbcode(m;n)  \msim{}  L)



Date html generated: 2018_05_21-PM-11_40_04
Last ObjectModification: 2017_07_26-PM-06_42_49

Theory : rationals


Home Index