Nuprl Lemma : singleton-complex_wf

[k,n:ℕ]. ∀[c:{c:ℚCube(k)| dim(c) n ∈ ℤ].  (singleton-complex(c) ∈ n-dim-complex)


Proof




Definitions occuring in Statement :  singleton-complex: singleton-complex(c) rational-cube-complex: n-dim-complex rat-cube-dimension: dim(c) rational-cube: Cube(k) nat: uall: [x:A]. B[x] member: t ∈ T set: {x:A| B[x]}  int: equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T singleton-complex: singleton-complex(c) and: P ∧ Q cand: c∧ B all: x:A. B[x] so_lambda: λ2y.t[x; y] top: Top so_apply: x[s1;s2] iff: ⇐⇒ Q rev_implies:  Q implies:  Q true: True so_lambda: λ2x.t[x] subtype_rel: A ⊆B int_seg: {i..j-} nat: so_apply: x[s] uimplies: supposing a rational-cube-complex: n-dim-complex prop:
Lemmas referenced :  no_repeats_singleton rational-cube_wf pairwise-singleton istype-void l_all_cons equal-wf-base rat-cube-dimension_wf set_subtype_base lelt_wf int_subtype_base le_wf nil_wf l_all_nil cons_wf no_repeats_wf pairwise_wf2 compatible-rat-cubes_wf l_all_wf2 l_member_wf istype-int istype-nat
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut setElimination thin rename sqequalRule extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality hypothesis independent_pairFormation dependent_functionElimination isect_memberEquality_alt voidElimination productElimination independent_functionElimination natural_numberEquality because_Cache lambdaEquality_alt intEquality applyEquality minusEquality addEquality inhabitedIsType equalityTransitivity equalitySymmetry independent_isectElimination dependent_set_memberEquality_alt productIsType universeIsType instantiate cumulativity setIsType axiomEquality equalityIstype sqequalBase isectIsTypeImplies

Latex:
\mforall{}[k,n:\mBbbN{}].  \mforall{}[c:\{c:\mBbbQ{}Cube(k)|  dim(c)  =  n\}  ].    (singleton-complex(c)  \mmember{}  n-dim-complex)



Date html generated: 2020_05_20-AM-09_22_22
Last ObjectModification: 2019_11_13-PM-06_45_14

Theory : rationals


Home Index