Nuprl Lemma : Kleisli-left_wf

[C:SmallCategory]. ∀M:Monad(C). (KlF(C;M) ∈ Functor(C;Kl(C;M)))


Proof




Definitions occuring in Statement :  Kleisli-left: KlF(C;M) Kleisli-cat: Kl(C;M) cat-monad: Monad(C) cat-functor: Functor(C1;C2) small-category: SmallCategory uall: [x:A]. B[x] all: x:A. B[x] member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] Kleisli-left: KlF(C;M) so_lambda: λ2x.t[x] subtype_rel: A ⊆B uimplies: supposing a cat-ob: cat-ob(C) pi1: fst(t) Kleisli-cat: Kl(C;M) mk-cat: mk-cat so_apply: x[s] so_lambda: so_lambda3 cat-arrow: cat-arrow(C) pi2: snd(t) so_apply: x[s1;s2;s3] cat_comp: f top: Top squash: T prop: true: True guard: {T} iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q implies:  Q
Lemmas referenced :  mk-functor_wf Kleisli-cat_wf subtype_rel-equal cat-ob_wf cat_comp_wf monad-fun_wf monad-unit_wf cat-arrow_wf cat_arrow_triple_lemma cat_comp_tuple_lemma equal_wf squash_wf true_wf cat-comp_wf cat-comp-assoc monad-extend_wf iff_weakening_equal monad-unit-extend cat_id_tuple_lemma cat-comp-ident1 cat-monad_wf small-category_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lambdaFormation sqequalRule extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality because_Cache dependent_functionElimination hypothesis lambdaEquality applyEquality independent_isectElimination isect_memberEquality voidElimination voidEquality imageElimination equalityTransitivity equalitySymmetry universeEquality natural_numberEquality imageMemberEquality baseClosed productElimination independent_functionElimination axiomEquality

Latex:
\mforall{}[C:SmallCategory].  \mforall{}M:Monad(C).  (KlF(C;M)  \mmember{}  Functor(C;Kl(C;M)))



Date html generated: 2020_05_20-AM-07_59_48
Last ObjectModification: 2017_07_28-AM-09_21_04

Theory : small!categories


Home Index