Nuprl Lemma : cbva_seq_wf

[T,U:Type]. ∀[m:ℕ]. ∀[A:ℕm ⟶ ValueAllType]. ∀[L:i:ℕm ⟶ funtype(i;A;A i)]. ∀[F:(funtype(m;A;T) ⟶ T) ⟶ U].
  (cbva_seq(L; F; m) ∈ U)


Proof




Definitions occuring in Statement :  cbva_seq: cbva_seq(L; F; m) funtype: funtype(n;A;T) int_seg: {i..j-} nat: vatype: ValueAllType uall: [x:A]. B[x] member: t ∈ T apply: a function: x:A ⟶ B[x] natural_number: $n universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T cbva_seq: cbva_seq(L; F; m) int_seg: {i..j-} lelt: i ≤ j < k and: P ∧ Q le: A ≤ B less_than': less_than'(a;b) false: False not: ¬A implies:  Q prop: nat: ge: i ≥  all: x:A. B[x] decidable: Dec(P) or: P ∨ Q uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] top: Top subtype_rel: A ⊆B funtype: funtype(n;A;T) primrec: primrec(n;b;c) so_lambda: λ2x.t[x] so_apply: x[s] vatype: ValueAllType guard: {T}
Lemmas referenced :  nat_wf int_seg_properties int_seg_subtype_nat decidable__le int_seg_subtype vatype_wf int_seg_wf subtype_rel_dep_function le_wf funtype_wf subtype_rel_self lelt_wf int_formula_prop_wf int_formula_prop_le_lemma int_term_value_var_lemma int_term_value_add_lemma int_term_value_constant_lemma int_formula_prop_less_lemma int_formula_prop_not_lemma int_formula_prop_and_lemma intformle_wf itermVar_wf itermAdd_wf itermConstant_wf intformless_wf intformnot_wf intformand_wf satisfiable-full-omega-tt decidable__lt nat_properties false_wf callbyvalueall_seq_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule lemma_by_obid sqequalHypSubstitution isectElimination thin cumulativity hypothesisEquality dependent_set_memberEquality natural_numberEquality independent_pairFormation lambdaFormation hypothesis setElimination rename dependent_functionElimination addEquality unionElimination independent_isectElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality isect_memberEquality voidElimination voidEquality computeAll applyEquality because_Cache instantiate universeEquality axiomEquality equalityTransitivity equalitySymmetry functionEquality productElimination

Latex:
\mforall{}[T,U:Type].  \mforall{}[m:\mBbbN{}].  \mforall{}[A:\mBbbN{}m  {}\mrightarrow{}  ValueAllType].  \mforall{}[L:i:\mBbbN{}m  {}\mrightarrow{}  funtype(i;A;A  i)].
\mforall{}[F:(funtype(m;A;T)  {}\mrightarrow{}  T)  {}\mrightarrow{}  U].
    (cbva\_seq(L;  F;  m)  \mmember{}  U)



Date html generated: 2016_05_15-PM-02_09_39
Last ObjectModification: 2016_01_15-PM-10_21_39

Theory : untyped!computation


Home Index