Nuprl Lemma : cbva_seq_wf
∀[T,U:Type]. ∀[m:ℕ]. ∀[A:ℕm ⟶ ValueAllType]. ∀[L:i:ℕm ⟶ funtype(i;A;A i)]. ∀[F:(funtype(m;A;T) ⟶ T) ⟶ U].
(cbva_seq(L; F; m) ∈ U)
Proof
Definitions occuring in Statement :
cbva_seq: cbva_seq(L; F; m)
,
funtype: funtype(n;A;T)
,
int_seg: {i..j-}
,
nat: ℕ
,
vatype: ValueAllType
,
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
apply: f a
,
function: x:A ⟶ B[x]
,
natural_number: $n
,
universe: Type
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
cbva_seq: cbva_seq(L; F; m)
,
int_seg: {i..j-}
,
lelt: i ≤ j < k
,
and: P ∧ Q
,
le: A ≤ B
,
less_than': less_than'(a;b)
,
false: False
,
not: ¬A
,
implies: P
⇒ Q
,
prop: ℙ
,
nat: ℕ
,
ge: i ≥ j
,
all: ∀x:A. B[x]
,
decidable: Dec(P)
,
or: P ∨ Q
,
uimplies: b supposing a
,
satisfiable_int_formula: satisfiable_int_formula(fmla)
,
exists: ∃x:A. B[x]
,
top: Top
,
subtype_rel: A ⊆r B
,
funtype: funtype(n;A;T)
,
primrec: primrec(n;b;c)
,
so_lambda: λ2x.t[x]
,
so_apply: x[s]
,
vatype: ValueAllType
,
guard: {T}
Lemmas referenced :
nat_wf,
int_seg_properties,
int_seg_subtype_nat,
decidable__le,
int_seg_subtype,
vatype_wf,
int_seg_wf,
subtype_rel_dep_function,
le_wf,
funtype_wf,
subtype_rel_self,
lelt_wf,
int_formula_prop_wf,
int_formula_prop_le_lemma,
int_term_value_var_lemma,
int_term_value_add_lemma,
int_term_value_constant_lemma,
int_formula_prop_less_lemma,
int_formula_prop_not_lemma,
int_formula_prop_and_lemma,
intformle_wf,
itermVar_wf,
itermAdd_wf,
itermConstant_wf,
intformless_wf,
intformnot_wf,
intformand_wf,
satisfiable-full-omega-tt,
decidable__lt,
nat_properties,
false_wf,
callbyvalueall_seq_wf
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation,
introduction,
cut,
sqequalRule,
lemma_by_obid,
sqequalHypSubstitution,
isectElimination,
thin,
cumulativity,
hypothesisEquality,
dependent_set_memberEquality,
natural_numberEquality,
independent_pairFormation,
lambdaFormation,
hypothesis,
setElimination,
rename,
dependent_functionElimination,
addEquality,
unionElimination,
independent_isectElimination,
dependent_pairFormation,
lambdaEquality,
int_eqEquality,
intEquality,
isect_memberEquality,
voidElimination,
voidEquality,
computeAll,
applyEquality,
because_Cache,
instantiate,
universeEquality,
axiomEquality,
equalityTransitivity,
equalitySymmetry,
functionEquality,
productElimination
Latex:
\mforall{}[T,U:Type]. \mforall{}[m:\mBbbN{}]. \mforall{}[A:\mBbbN{}m {}\mrightarrow{} ValueAllType]. \mforall{}[L:i:\mBbbN{}m {}\mrightarrow{} funtype(i;A;A i)].
\mforall{}[F:(funtype(m;A;T) {}\mrightarrow{} T) {}\mrightarrow{} U].
(cbva\_seq(L; F; m) \mmember{} U)
Date html generated:
2016_05_15-PM-02_09_39
Last ObjectModification:
2016_01_15-PM-10_21_39
Theory : untyped!computation
Home
Index