Nuprl Lemma : mk_lambdas_fun_lambdas1
∀[f:Top]. ∀[k,m:ℕ]. ∀[n:ℕm + 1].
  (mk_lambdas_fun(λh.mk_lambdas(h mk_lambdas(f;n);k);m) ~ mk_lambdas(mk_lambdas_fun(λg.mk_lambdas(g f;k);m - n);n))
Proof
Definitions occuring in Statement : 
mk_lambdas: mk_lambdas(F;m), 
mk_lambdas_fun: mk_lambdas_fun(F;m), 
int_seg: {i..j-}, 
nat: ℕ, 
uall: ∀[x:A]. B[x], 
top: Top, 
apply: f a, 
lambda: λx.A[x], 
subtract: n - m, 
add: n + m, 
natural_number: $n, 
sqequal: s ~ t
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
all: ∀x:A. B[x], 
nat: ℕ, 
implies: P ⇒ Q, 
false: False, 
ge: i ≥ j , 
uimplies: b supposing a, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
not: ¬A, 
top: Top, 
and: P ∧ Q, 
prop: ℙ, 
mk_lambdas: mk_lambdas(F;m), 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
decidable: Dec(P), 
or: P ∨ Q, 
sq_type: SQType(T), 
guard: {T}, 
nat_plus: ℕ+, 
le: A ≤ B, 
subtype_rel: A ⊆r B, 
less_than': less_than'(a;b), 
int_seg: {i..j-}, 
lelt: i ≤ j < k
Lemmas referenced : 
top_wf, 
int_seg_wf, 
int_term_value_add_lemma, 
itermAdd_wf, 
int_seg_properties, 
false_wf, 
int_seg_subtype_nat, 
nat_wf, 
mk_lambdas_unroll, 
less_than_transitivity1, 
mk_lambdas_fun-unroll-first, 
primrec1_lemma, 
decidable__le, 
int_term_value_subtract_lemma, 
int_formula_prop_eq_lemma, 
int_formula_prop_not_lemma, 
itermSubtract_wf, 
intformeq_wf, 
intformnot_wf, 
subtract_wf, 
decidable__equal_int, 
int_subtype_base, 
set_subtype_base, 
subtype_base_sq, 
primrec0_lemma, 
le_wf, 
less_than_wf, 
ge_wf, 
int_formula_prop_wf, 
int_formula_prop_less_lemma, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_and_lemma, 
intformless_wf, 
itermVar_wf, 
itermConstant_wf, 
intformle_wf, 
intformand_wf, 
satisfiable-full-omega-tt, 
nat_properties
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
thin, 
lambdaFormation, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
hypothesisEquality, 
hypothesis, 
setElimination, 
rename, 
intWeakElimination, 
natural_numberEquality, 
independent_isectElimination, 
dependent_pairFormation, 
lambdaEquality, 
int_eqEquality, 
intEquality, 
dependent_functionElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
independent_pairFormation, 
computeAll, 
independent_functionElimination, 
sqequalAxiom, 
because_Cache, 
instantiate, 
unionElimination, 
dependent_set_memberEquality, 
equalityTransitivity, 
equalitySymmetry, 
cumulativity, 
productElimination, 
applyEquality, 
addEquality
Latex:
\mforall{}[f:Top].  \mforall{}[k,m:\mBbbN{}].  \mforall{}[n:\mBbbN{}m  +  1].
    (mk\_lambdas\_fun(\mlambda{}h.mk\_lambdas(h  mk\_lambdas(f;n);k);m) 
    \msim{}  mk\_lambdas(mk\_lambdas\_fun(\mlambda{}g.mk\_lambdas(g  f;k);m  -  n);n))
Date html generated:
2016_05_15-PM-02_11_22
Last ObjectModification:
2016_01_15-PM-10_20_22
Theory : untyped!computation
Home
Index