Nuprl Lemma : mk_lambdas_fun_lambdas1

[f:Top]. ∀[k,m:ℕ]. ∀[n:ℕ1].
  (mk_lambdas_fun(λh.mk_lambdas(h mk_lambdas(f;n);k);m) mk_lambdas(mk_lambdas_fun(λg.mk_lambdas(g f;k);m n);n))


Proof




Definitions occuring in Statement :  mk_lambdas: mk_lambdas(F;m) mk_lambdas_fun: mk_lambdas_fun(F;m) int_seg: {i..j-} nat: uall: [x:A]. B[x] top: Top apply: a lambda: λx.A[x] subtract: m add: m natural_number: $n sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] nat: implies:  Q false: False ge: i ≥  uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] not: ¬A top: Top and: P ∧ Q prop: mk_lambdas: mk_lambdas(F;m) so_lambda: λ2x.t[x] so_apply: x[s] decidable: Dec(P) or: P ∨ Q sq_type: SQType(T) guard: {T} nat_plus: + le: A ≤ B subtype_rel: A ⊆B less_than': less_than'(a;b) int_seg: {i..j-} lelt: i ≤ j < k
Lemmas referenced :  top_wf int_seg_wf int_term_value_add_lemma itermAdd_wf int_seg_properties false_wf int_seg_subtype_nat nat_wf mk_lambdas_unroll less_than_transitivity1 mk_lambdas_fun-unroll-first primrec1_lemma decidable__le int_term_value_subtract_lemma int_formula_prop_eq_lemma int_formula_prop_not_lemma itermSubtract_wf intformeq_wf intformnot_wf subtract_wf decidable__equal_int int_subtype_base set_subtype_base subtype_base_sq primrec0_lemma le_wf less_than_wf ge_wf int_formula_prop_wf int_formula_prop_less_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_and_lemma intformless_wf itermVar_wf itermConstant_wf intformle_wf intformand_wf satisfiable-full-omega-tt nat_properties
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule thin lambdaFormation lemma_by_obid sqequalHypSubstitution isectElimination hypothesisEquality hypothesis setElimination rename intWeakElimination natural_numberEquality independent_isectElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality dependent_functionElimination isect_memberEquality voidElimination voidEquality independent_pairFormation computeAll independent_functionElimination sqequalAxiom because_Cache instantiate unionElimination dependent_set_memberEquality equalityTransitivity equalitySymmetry cumulativity productElimination applyEquality addEquality

Latex:
\mforall{}[f:Top].  \mforall{}[k,m:\mBbbN{}].  \mforall{}[n:\mBbbN{}m  +  1].
    (mk\_lambdas\_fun(\mlambda{}h.mk\_lambdas(h  mk\_lambdas(f;n);k);m) 
    \msim{}  mk\_lambdas(mk\_lambdas\_fun(\mlambda{}g.mk\_lambdas(g  f;k);m  -  n);n))



Date html generated: 2016_05_15-PM-02_11_22
Last ObjectModification: 2016_01_15-PM-10_20_22

Theory : untyped!computation


Home Index