Nuprl Lemma : compU_wf
∀[G:j⊢]. (compU() ∈ G ⊢ Compositon'(c𝕌))
Proof
Definitions occuring in Statement : 
compU: compU(), 
cubical-universe: c𝕌, 
composition-structure: Gamma ⊢ Compositon(A), 
cubical_set: CubicalSet, 
uall: ∀[x:A]. B[x], 
member: t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
composition-structure: Gamma ⊢ Compositon(A), 
uniform-comp-function: uniform-comp-function{j:l, i:l}(Gamma; A; comp), 
all: ∀x:A. B[x], 
constrained-cubical-term: {Gamma ⊢ _:A[phi |⟶ t]}, 
prop: ℙ, 
compU: compU(), 
squash: ↓T, 
true: True, 
uimplies: b supposing a, 
subtype_rel: A ⊆r B, 
same-cubical-type: Gamma ⊢ A = B, 
interval-1: 1(𝕀), 
csm-id-adjoin: [u], 
csm-ap-term: (t)s, 
interval-type: 𝕀, 
csm+: tau+, 
csm-ap: (s)x, 
csm-id: 1(X), 
csm-adjoin: (s;u), 
cc-snd: q, 
cc-fst: p, 
constant-cubical-type: (X), 
csm-ap-type: (AF)s, 
csm-comp: G o F, 
pi2: snd(t), 
compose: f o g, 
pi1: fst(t), 
implies: P ⇒ Q, 
cubical-type: {X ⊢ _}, 
interval-0: 0(𝕀), 
rev-type-line: (A)-, 
interval-rev: 1-(r), 
cubical-term-at: u(a), 
guard: {T}, 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
rev_implies: P ⇐ Q, 
universe-comp-op: compOp(t), 
rev-type-line-comp: (cA)-, 
csm-composition: (comp)sigma, 
csm-comp-structure: (cA)tau, 
composition-function: composition-function{j:l,i:l}(Gamma;A)
Lemmas referenced : 
compU_wf1, 
csm-cubical-universe, 
cubical-term_wf, 
cube-context-adjoin_wf, 
context-subset_wf, 
interval-type_wf, 
cubical-universe_wf, 
istype-cubical-term, 
face-type_wf, 
cube_set_map_wf, 
uniform-comp-function_wf, 
cubical_set_wf, 
rev-type-line_wf, 
universe-decode_wf, 
equivU_wf, 
rev-type-line-comp_wf, 
universe-comp-op_wf, 
csm-ap-term_wf, 
csm-id-adjoin_wf, 
interval-1_wf, 
csm-universe-decode, 
cubical-equiv_wf, 
squash_wf, 
true_wf, 
cubical-type_wf, 
cubical-term-eqcd, 
equiv-fun_wf, 
thin-context-subset, 
glue-type_wf, 
glue-type-constraint, 
comp-op-to-comp-fun_wf2, 
cubical_set_cumulativity-i-j, 
csm-composition_wf, 
glue-comp_wf2, 
rev-type-line-0, 
rev-type-line-1, 
cubical-universe-cumulativity, 
csm-universe-encode, 
comp-fun-to-comp-op_wf, 
csm-ap-type_wf, 
csm-face-type, 
context-subset-map, 
csm-equivU, 
dma-neg-dM0, 
dma-neg-dM1, 
istype-cubical-universe-term, 
csm-ap-term-universe, 
composition-op_wf, 
cubical-type-cumulativity2, 
equal_wf, 
istype-universe, 
csm-rev-type-line, 
csm+_wf_interval, 
subtype_rel_self, 
iff_weakening_equal, 
csm-equiv-fun, 
csm-glue-type, 
cubical-fun_wf, 
universe-encode_wf, 
csm-glue-comp, 
subtype_rel-equal, 
csm-comp-structure_wf, 
cube_set_map_cumulativity-i-j, 
csm-universe-comp-op, 
csm-comp-op-to-comp-fun-sq, 
composition-structure_wf, 
csm-comp-fun-to-comp-op, 
subset-cubical-term, 
context-subset-is-subset, 
csm-id-adjoin_wf-interval-1, 
interval-0_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
dependent_set_memberEquality_alt, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
lambdaFormation_alt, 
sqequalRule, 
Error :memTop, 
because_Cache, 
instantiate, 
universeIsType, 
inhabitedIsType, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
rename, 
setElimination, 
applyLambdaEquality, 
applyEquality, 
lambdaEquality_alt, 
imageElimination, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
independent_isectElimination, 
cumulativity, 
universeEquality, 
hyp_replacement, 
dependent_functionElimination, 
equalityIstype, 
independent_functionElimination, 
productElimination, 
independent_pairFormation, 
productIsType, 
functionExtensionality, 
setEquality, 
setIsType
Latex:
\mforall{}[G:j\mvdash{}].  (compU()  \mmember{}  G  \mvdash{}  Compositon'(c\mBbbU{}))
Date html generated:
2020_05_20-PM-07_23_17
Last ObjectModification:
2020_04_28-PM-00_05_23
Theory : cubical!type!theory
Home
Index