Nuprl Lemma : ip-circle-circle-lemma2
∀rv:InnerProductSpace. ∀r1,r2:{r:ℝ| r0 ≤ r} . ∀b:Point.
  ((r0 < ||b||)
  ⇒ ((r1^2 - r2^2) + ||b||^2^2 ≤ (r(4) * ||b||^2 * r1^2))
  ⇒ (∃u,v:Point
       (((||u|| = r1) ∧ (||u - b|| = r2))
       ∧ ((||v|| = r1) ∧ (||v - b|| = r2))
       ∧ (((r1^2 - r2^2) + ||b||^2^2 < (r(4) * ||b||^2 * r1^2)) ⇒ u # v))))
Proof
Definitions occuring in Statement : 
rv-norm: ||x||, 
rv-sub: x - y, 
inner-product-space: InnerProductSpace, 
rleq: x ≤ y, 
rless: x < y, 
rnexp: x^k1, 
rsub: x - y, 
req: x = y, 
rmul: a * b, 
radd: a + b, 
int-to-real: r(n), 
real: ℝ, 
ss-sep: x # y, 
ss-point: Point, 
all: ∀x:A. B[x], 
exists: ∃x:A. B[x], 
implies: P ⇒ Q, 
and: P ∧ Q, 
set: {x:A| B[x]} , 
natural_number: $n
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
member: t ∈ T, 
implies: P ⇒ Q, 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
rev_implies: P ⇐ Q, 
exists: ∃x:A. B[x], 
prop: ℙ, 
uall: ∀[x:A]. B[x], 
nat: ℕ, 
le: A ≤ B, 
less_than': less_than'(a;b), 
false: False, 
not: ¬A, 
subtype_rel: A ⊆r B, 
guard: {T}, 
uimplies: b supposing a, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
rneq: x ≠ y, 
or: P ∨ Q, 
uiff: uiff(P;Q), 
rev_uimplies: rev_uimplies(P;Q), 
less_than: a < b, 
squash: ↓T, 
true: True, 
exp: i^n, 
primrec: primrec(n;b;c), 
subtract: n - m, 
rsub: x - y, 
let: let, 
cand: A c∧ B, 
rv-sub: x - y, 
rv-minus: -x, 
sq_stable: SqStable(P), 
nat_plus: ℕ+
Lemmas referenced : 
ip-circle-circle-lemma1, 
rv-perp-same-norm, 
rv-norm-positive-iff, 
rleq_wf, 
rnexp_wf, 
false_wf, 
le_wf, 
radd_wf, 
rsub_wf, 
rv-norm_wf, 
real_wf, 
int-to-real_wf, 
req_wf, 
rmul_wf, 
rv-ip_wf, 
rless_wf, 
ss-point_wf, 
real-vector-space_subtype1, 
inner-product-space_subtype, 
subtype_rel_transitivity, 
inner-product-space_wf, 
real-vector-space_wf, 
separation-space_wf, 
set_wf, 
radd-preserves-rleq, 
rdiv_wf, 
rless-int, 
equal_wf, 
rminus_wf, 
exp_wf2, 
req-int, 
rless_transitivity1, 
rleq_weakening, 
rmul_preserves_rleq, 
squash_wf, 
true_wf, 
nat_wf, 
iff_weakening_equal, 
uiff_transitivity, 
rleq_functionality, 
radd_comm, 
radd_functionality, 
req_weakening, 
radd-rminus-assoc, 
radd-zero-both, 
req_functionality, 
rnexp-int, 
rless_functionality, 
req_transitivity, 
req_inversion, 
rnexp-rdiv, 
rdiv_functionality, 
rmul-rdiv-cancel2, 
rmul-assoc, 
rmul_functionality, 
rmul_comm, 
rmul-ac, 
rnexp-positive, 
rsqrt_wf, 
all_wf, 
or_wf, 
ss-eq_wf, 
rv-mul_wf, 
rv-add_wf, 
rv-sub_wf, 
ss-eq_weakening, 
ss-sep_wf, 
exists_wf, 
rmul_preserves_rless, 
rmul-zero-both, 
rv-minus_wf, 
rv-0_wf, 
ss-eq_functionality, 
rv-add_functionality, 
rv-mul-linear, 
rv-mul-mul, 
rv-add-assoc, 
ss-eq_transitivity, 
rv-add-swap, 
rv-add-comm, 
rv-mul-add-alt, 
rv-mul-add, 
rv-mul_functionality, 
rminus-as-rmul, 
rmul-minus, 
rmul_over_rminus, 
rminus_functionality, 
rmul-one-both, 
rminus-rminus, 
rmul-distrib2, 
rmul-identity1, 
radd-int, 
rv-mul0, 
rv-0-add, 
rv-sep-iff-norm, 
rv-norm_functionality, 
rabs_wf, 
rmul-is-positive, 
rleq-int, 
rleq_weakening_rless, 
sq_stable__rleq, 
rv-norm-mul, 
rabs-of-nonneg, 
rabs-rmul, 
rmul-int, 
square-rless-implies, 
less_than_wf, 
rnexp0, 
rnexp2, 
sq_stable__and, 
sq_stable__req, 
req_witness, 
radd-preserves-rless
Rules used in proof : 
cut, 
introduction, 
extract_by_obid, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
hypothesis, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
independent_functionElimination, 
because_Cache, 
productElimination, 
rename, 
isectElimination, 
dependent_set_memberEquality, 
natural_numberEquality, 
sqequalRule, 
independent_pairFormation, 
setElimination, 
applyEquality, 
lambdaEquality, 
setEquality, 
productEquality, 
instantiate, 
independent_isectElimination, 
inrFormation, 
equalityTransitivity, 
equalitySymmetry, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
universeEquality, 
functionEquality, 
inlFormation, 
dependent_pairFormation, 
addLevel, 
minusEquality, 
addEquality, 
multiplyEquality, 
promote_hyp, 
isect_memberEquality, 
levelHypothesis
Latex:
\mforall{}rv:InnerProductSpace.  \mforall{}r1,r2:\{r:\mBbbR{}|  r0  \mleq{}  r\}  .  \mforall{}b:Point.
    ((r0  <  ||b||)
    {}\mRightarrow{}  ((r1\^{}2  -  r2\^{}2)  +  ||b||\^{}2\^{}2  \mleq{}  (r(4)  *  ||b||\^{}2  *  r1\^{}2))
    {}\mRightarrow{}  (\mexists{}u,v:Point
              (((||u||  =  r1)  \mwedge{}  (||u  -  b||  =  r2))
              \mwedge{}  ((||v||  =  r1)  \mwedge{}  (||v  -  b||  =  r2))
              \mwedge{}  (((r1\^{}2  -  r2\^{}2)  +  ||b||\^{}2\^{}2  <  (r(4)  *  ||b||\^{}2  *  r1\^{}2))  {}\mRightarrow{}  u  \#  v))))
Date html generated:
2017_10_05-AM-00_09_57
Last ObjectModification:
2017_03_14-PM-02_46_41
Theory : inner!product!spaces
Home
Index