Nuprl Lemma : Cauchy-Schwarz1-strict
∀n:ℕ. ∀x,y:ℕn + 1 ⟶ ℝ.
  ((∃i,j:ℕn + 1. x[j] * y[i] ≠ x[i] * y[j])
  ⇒ ((Σ{x[i] * y[i] | 0≤i≤n} * Σ{x[i] * y[i] | 0≤i≤n}) < (Σ{x[i] * x[i] | 0≤i≤n} * Σ{y[i] * y[i] | 0≤i≤n})))
Proof
Definitions occuring in Statement : 
rsum: Σ{x[k] | n≤k≤m}, 
rneq: x ≠ y, 
rless: x < y, 
rmul: a * b, 
real: ℝ, 
int_seg: {i..j-}, 
nat: ℕ, 
so_apply: x[s], 
all: ∀x:A. B[x], 
exists: ∃x:A. B[x], 
implies: P ⇒ Q, 
function: x:A ⟶ B[x], 
add: n + m, 
natural_number: $n
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
member: t ∈ T, 
uall: ∀[x:A]. B[x], 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
rev_implies: P ⇐ Q, 
less_than: a < b, 
squash: ↓T, 
less_than': less_than'(a;b), 
true: True, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
uimplies: b supposing a, 
prop: ℙ, 
nat: ℕ, 
uiff: uiff(P;Q), 
req_int_terms: t1 ≡ t2, 
false: False, 
not: ¬A, 
top: Top, 
int_seg: {i..j-}, 
lelt: i ≤ j < k, 
guard: {T}, 
ge: i ≥ j , 
exists: ∃x:A. B[x], 
decidable: Dec(P), 
or: P ∨ Q, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
le: A ≤ B, 
pointwise-req: x[k] = y[k] for k ∈ [n,m], 
rev_uimplies: rev_uimplies(P;Q), 
pointwise-rleq: x[k] ≤ y[k] for k ∈ [n,m], 
rless: x < y, 
sq_exists: ∃x:{A| B[x]}, 
nat_plus: ℕ+
Lemmas referenced : 
rmul_preserves_rless, 
int-to-real_wf, 
rless-int, 
rless_functionality, 
rmul_wf, 
rsum_wf, 
rmul_comm, 
exists_wf, 
int_seg_wf, 
rneq_wf, 
real_wf, 
nat_wf, 
rless_wf, 
radd_wf, 
itermSubtract_wf, 
itermAdd_wf, 
itermMultiply_wf, 
itermVar_wf, 
itermConstant_wf, 
req-iff-rsub-is-0, 
req_weakening, 
real_polynomial_null, 
real_term_value_sub_lemma, 
real_term_value_add_lemma, 
real_term_value_mul_lemma, 
real_term_value_var_lemma, 
real_term_value_const_lemma, 
int_seg_properties, 
nat_properties, 
decidable__lt, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformless_wf, 
intformle_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_less_lemma, 
int_term_value_var_lemma, 
int_term_value_add_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_wf, 
lelt_wf, 
le_wf, 
rmul_functionality, 
rsum_product, 
radd_functionality, 
req_transitivity, 
req_inversion, 
rsum_linearity2, 
rsum_functionality2, 
rsum_linearity1, 
rsub_wf, 
rnexp_wf, 
false_wf, 
rsum_functionality, 
req_functionality, 
rnexp2, 
rsum-of-nonneg-positive-iff, 
rsum_nonneg, 
rnexp2-nonneg, 
equal_wf, 
rneq-iff-rabs, 
rabs_wf, 
rnexp-positive, 
rabs-rnexp, 
rabs-of-nonneg, 
nat_plus_properties, 
rless-implies-rless, 
rsum_linearity-rsub
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
because_Cache, 
isectElimination, 
natural_numberEquality, 
hypothesis, 
independent_functionElimination, 
productElimination, 
sqequalRule, 
independent_pairFormation, 
imageMemberEquality, 
hypothesisEquality, 
baseClosed, 
lambdaEquality, 
applyEquality, 
functionExtensionality, 
independent_isectElimination, 
addEquality, 
setElimination, 
rename, 
functionEquality, 
addLevel, 
impliesFunctionality, 
approximateComputation, 
int_eqEquality, 
intEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
dependent_set_memberEquality, 
unionElimination, 
dependent_pairFormation, 
equalityTransitivity, 
equalitySymmetry, 
promote_hyp
Latex:
\mforall{}n:\mBbbN{}.  \mforall{}x,y:\mBbbN{}n  +  1  {}\mrightarrow{}  \mBbbR{}.
    ((\mexists{}i,j:\mBbbN{}n  +  1.  x[j]  *  y[i]  \mneq{}  x[i]  *  y[j])
    {}\mRightarrow{}  ((\mSigma{}\{x[i]  *  y[i]  |  0\mleq{}i\mleq{}n\}  *  \mSigma{}\{x[i]  *  y[i]  |  0\mleq{}i\mleq{}n\})  <  (\mSigma{}\{x[i]  *  x[i]  |  0\mleq{}i\mleq{}n\}
          *  \mSigma{}\{y[i]  *  y[i]  |  0\mleq{}i\mleq{}n\})))
Date html generated:
2017_10_03-AM-09_04_12
Last ObjectModification:
2017_06_19-PM-02_08_02
Theory : reals
Home
Index