Nuprl Lemma : IVT-locally-non-constant

a:ℝ. ∀b:{b:ℝa < b} . ∀f:[a, b] ⟶ℝ.
  ∀c:ℝ((f(a) ≤ c)  (c ≤ f(b))  locally-non-constant(f;a;b;c)  (∃x:ℝ [((x ∈ [a, b]) ∧ (f(x) c))])) 
  supposing ∀x,y:{x:ℝx ∈ [a, b]} .  ((x y)  (f[x] f[y]))


Proof




Definitions occuring in Statement :  locally-non-constant: locally-non-constant(f;a;b;c) r-ap: f(x) rfun: I ⟶ℝ rccint: [l, u] i-member: r ∈ I rleq: x ≤ y rless: x < y req: y real: uimplies: supposing a so_apply: x[s] all: x:A. B[x] sq_exists: x:A [B[x]] implies:  Q and: P ∧ Q set: {x:A| B[x]} 
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T uimplies: supposing a implies:  Q uall: [x:A]. B[x] so_apply: x[s] rfun: I ⟶ℝ sq_stable: SqStable(P) guard: {T} squash: T and: P ∧ Q i-member: r ∈ I rccint: [l, u] prop: exists: x:A. B[x] cand: c∧ B nat_plus: + decidable: Dec(P) or: P ∨ Q not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) top: Top false: False uiff: uiff(P;Q) le: A ≤ B less_than': less_than'(a;b) iff: ⇐⇒ Q rev_implies:  Q less_than: a < b true: True rneq: x ≠ y sq_exists: x:A [B[x]] rleq: x ≤ y rnonneg: rnonneg(x) rless: x < y sq_type: SQType(T) int_nzero: -o nequal: a ≠ b ∈  rdiv: (x/y) req_int_terms: t1 ≡ t2 so_lambda: λ2x.t[x] locally-non-constant-rational: locally-non-constant-rational(f;a;b;c) subtype_rel: A ⊆B rev_uimplies: rev_uimplies(P;Q) rge: x ≥ y
Lemmas referenced :  intermediate-value-lemma' req_witness sq_stable__rleq rleq_weakening_rless rleq_wf r-ap_wf rccint_wf rleq_weakening_equal rleq-int-fractions2 decidable__lt full-omega-unsat intformnot_wf intformless_wf itermConstant_wf istype-int int_formula_prop_not_lemma istype-void int_formula_prop_less_lemma int_term_value_constant_lemma int_formula_prop_wf istype-less_than istype-false rless-int-fractions3 rdiv_wf rless-int rless_wf int-to-real_wf i-member_wf rsub_wf rmul_wf locally-non-constant_wf req_wf rfun_wf real_wf sq_stable__and sq_stable__i-member le_witness_for_triv sq_stable__rless rmul_preserves_rless radd_wf itermSubtract_wf itermMultiply_wf itermVar_wf rinv_wf2 itermAdd_wf subtype_base_sq int_subtype_base nat_plus_properties decidable__equal_int intformeq_wf int_formula_prop_eq_lemma int_term_value_mul_lemma nequal_wf rless-implies-rless req-iff-rsub-is-0 rless_functionality req_transitivity radd_functionality rmul-rinv3 int-rinv-cancel real_polynomial_null real_term_value_sub_lemma real_term_value_mul_lemma real_term_value_var_lemma real_term_value_const_lemma real_term_value_add_lemma locally-non-constant-via-rational function-is-continuous member_rccint_lemma rless_transitivity2 rless_transitivity1 nat_plus_wf set-value-type equal_wf less_than_wf int-value-type set_subtype_base int-rdiv_wf nat_plus_inc_int_nzero rneq_wf rneq-int rmul_preserves_rleq minus-one-mul-top rleq_functionality_wrt_implies rsub_functionality_wrt_rleq rleq_functionality req_weakening
Rules used in proof :  cut introduction extract_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt hypothesis sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality isect_memberFormation_alt sqequalRule lambdaEquality_alt isectElimination applyEquality because_Cache independent_functionElimination functionIsTypeImplies inhabitedIsType rename independent_isectElimination setElimination imageMemberEquality baseClosed imageElimination dependent_set_memberEquality_alt independent_pairFormation productIsType universeIsType dependent_pairFormation_alt natural_numberEquality unionElimination approximateComputation isect_memberEquality_alt voidElimination productElimination inrFormation_alt setIsType functionIsType equalityTransitivity equalitySymmetry productEquality closedConclusion instantiate cumulativity intEquality equalityIstype sqequalBase int_eqEquality cutEval promote_hyp applyLambdaEquality dependent_set_memberFormation_alt minusEquality

Latex:
\mforall{}a:\mBbbR{}.  \mforall{}b:\{b:\mBbbR{}|  a  <  b\}  .  \mforall{}f:[a,  b]  {}\mrightarrow{}\mBbbR{}.
    \mforall{}c:\mBbbR{}
        ((f(a)  \mleq{}  c)
        {}\mRightarrow{}  (c  \mleq{}  f(b))
        {}\mRightarrow{}  locally-non-constant(f;a;b;c)
        {}\mRightarrow{}  (\mexists{}x:\mBbbR{}  [((x  \mmember{}  [a,  b])  \mwedge{}  (f(x)  =  c))])) 
    supposing  \mforall{}x,y:\{x:\mBbbR{}|  x  \mmember{}  [a,  b]\}  .    ((x  =  y)  {}\mRightarrow{}  (f[x]  =  f[y]))



Date html generated: 2019_10_30-AM-07_49_50
Last ObjectModification: 2019_01_31-AM-11_38_02

Theory : reals


Home Index