Nuprl Lemma : IVT-locally-non-constant
∀a:ℝ. ∀b:{b:ℝ| a < b} . ∀f:[a, b] ⟶ℝ.
  ∀c:ℝ. ((f(a) ≤ c) 
⇒ (c ≤ f(b)) 
⇒ locally-non-constant(f;a;b;c) 
⇒ (∃x:ℝ [((x ∈ [a, b]) ∧ (f(x) = c))])) 
  supposing ∀x,y:{x:ℝ| x ∈ [a, b]} .  ((x = y) 
⇒ (f[x] = f[y]))
Proof
Definitions occuring in Statement : 
locally-non-constant: locally-non-constant(f;a;b;c)
, 
r-ap: f(x)
, 
rfun: I ⟶ℝ
, 
rccint: [l, u]
, 
i-member: r ∈ I
, 
rleq: x ≤ y
, 
rless: x < y
, 
req: x = y
, 
real: ℝ
, 
uimplies: b supposing a
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
sq_exists: ∃x:A [B[x]]
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
, 
set: {x:A| B[x]} 
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
implies: P 
⇒ Q
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
rfun: I ⟶ℝ
, 
sq_stable: SqStable(P)
, 
guard: {T}
, 
squash: ↓T
, 
and: P ∧ Q
, 
i-member: r ∈ I
, 
rccint: [l, u]
, 
prop: ℙ
, 
exists: ∃x:A. B[x]
, 
cand: A c∧ B
, 
nat_plus: ℕ+
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
not: ¬A
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
top: Top
, 
false: False
, 
uiff: uiff(P;Q)
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
less_than: a < b
, 
true: True
, 
rneq: x ≠ y
, 
sq_exists: ∃x:A [B[x]]
, 
rleq: x ≤ y
, 
rnonneg: rnonneg(x)
, 
rless: x < y
, 
sq_type: SQType(T)
, 
int_nzero: ℤ-o
, 
nequal: a ≠ b ∈ T 
, 
rdiv: (x/y)
, 
req_int_terms: t1 ≡ t2
, 
so_lambda: λ2x.t[x]
, 
locally-non-constant-rational: locally-non-constant-rational(f;a;b;c)
, 
subtype_rel: A ⊆r B
, 
rev_uimplies: rev_uimplies(P;Q)
, 
rge: x ≥ y
Lemmas referenced : 
intermediate-value-lemma', 
req_witness, 
sq_stable__rleq, 
rleq_weakening_rless, 
rleq_wf, 
r-ap_wf, 
rccint_wf, 
rleq_weakening_equal, 
rleq-int-fractions2, 
decidable__lt, 
full-omega-unsat, 
intformnot_wf, 
intformless_wf, 
itermConstant_wf, 
istype-int, 
int_formula_prop_not_lemma, 
istype-void, 
int_formula_prop_less_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_wf, 
istype-less_than, 
istype-false, 
rless-int-fractions3, 
rdiv_wf, 
rless-int, 
rless_wf, 
int-to-real_wf, 
i-member_wf, 
rsub_wf, 
rmul_wf, 
locally-non-constant_wf, 
req_wf, 
rfun_wf, 
real_wf, 
sq_stable__and, 
sq_stable__i-member, 
le_witness_for_triv, 
sq_stable__rless, 
rmul_preserves_rless, 
radd_wf, 
itermSubtract_wf, 
itermMultiply_wf, 
itermVar_wf, 
rinv_wf2, 
itermAdd_wf, 
subtype_base_sq, 
int_subtype_base, 
nat_plus_properties, 
decidable__equal_int, 
intformeq_wf, 
int_formula_prop_eq_lemma, 
int_term_value_mul_lemma, 
nequal_wf, 
rless-implies-rless, 
req-iff-rsub-is-0, 
rless_functionality, 
req_transitivity, 
radd_functionality, 
rmul-rinv3, 
int-rinv-cancel, 
real_polynomial_null, 
real_term_value_sub_lemma, 
real_term_value_mul_lemma, 
real_term_value_var_lemma, 
real_term_value_const_lemma, 
real_term_value_add_lemma, 
locally-non-constant-via-rational, 
function-is-continuous, 
member_rccint_lemma, 
rless_transitivity2, 
rless_transitivity1, 
nat_plus_wf, 
set-value-type, 
equal_wf, 
less_than_wf, 
int-value-type, 
set_subtype_base, 
int-rdiv_wf, 
nat_plus_inc_int_nzero, 
rneq_wf, 
rneq-int, 
rmul_preserves_rleq, 
minus-one-mul-top, 
rleq_functionality_wrt_implies, 
rsub_functionality_wrt_rleq, 
rleq_functionality, 
req_weakening
Rules used in proof : 
cut, 
introduction, 
extract_by_obid, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
hypothesis, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
isect_memberFormation_alt, 
sqequalRule, 
lambdaEquality_alt, 
isectElimination, 
applyEquality, 
because_Cache, 
independent_functionElimination, 
functionIsTypeImplies, 
inhabitedIsType, 
rename, 
independent_isectElimination, 
setElimination, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
dependent_set_memberEquality_alt, 
independent_pairFormation, 
productIsType, 
universeIsType, 
dependent_pairFormation_alt, 
natural_numberEquality, 
unionElimination, 
approximateComputation, 
isect_memberEquality_alt, 
voidElimination, 
productElimination, 
inrFormation_alt, 
setIsType, 
functionIsType, 
equalityTransitivity, 
equalitySymmetry, 
productEquality, 
closedConclusion, 
instantiate, 
cumulativity, 
intEquality, 
equalityIstype, 
sqequalBase, 
int_eqEquality, 
cutEval, 
promote_hyp, 
applyLambdaEquality, 
dependent_set_memberFormation_alt, 
minusEquality
Latex:
\mforall{}a:\mBbbR{}.  \mforall{}b:\{b:\mBbbR{}|  a  <  b\}  .  \mforall{}f:[a,  b]  {}\mrightarrow{}\mBbbR{}.
    \mforall{}c:\mBbbR{}
        ((f(a)  \mleq{}  c)
        {}\mRightarrow{}  (c  \mleq{}  f(b))
        {}\mRightarrow{}  locally-non-constant(f;a;b;c)
        {}\mRightarrow{}  (\mexists{}x:\mBbbR{}  [((x  \mmember{}  [a,  b])  \mwedge{}  (f(x)  =  c))])) 
    supposing  \mforall{}x,y:\{x:\mBbbR{}|  x  \mmember{}  [a,  b]\}  .    ((x  =  y)  {}\mRightarrow{}  (f[x]  =  f[y]))
Date html generated:
2019_10_30-AM-07_49_50
Last ObjectModification:
2019_01_31-AM-11_38_02
Theory : reals
Home
Index