Nuprl Lemma : cantor-common-middle-third-lemma

x,y,a,b:ℝ.
  (((x ∈ [(2 b)/3, b]) ∧ (y ∈ [(2 b)/3, b]))
     ∨ ((x ∈ [a, (a b)/3]) ∧ (y ∈ [a, (a b)/3]))) supposing 
     (((x ∈ [a, b]) ∧ (y ∈ [a, b]) ∧ (|x y| ≤ (b a/r(6)))) and 
     (a < b))


Proof




Definitions occuring in Statement :  rccint: [l, u] i-member: r ∈ I rdiv: (x/y) rleq: x ≤ y rless: x < y rabs: |x| int-rdiv: (a)/k1 int-rmul: k1 a rsub: y radd: b int-to-real: r(n) real: uimplies: supposing a all: x:A. B[x] or: P ∨ Q and: P ∧ Q natural_number: $n
Definitions unfolded in proof :  all: x:A. B[x] uimplies: supposing a member: t ∈ T uall: [x:A]. B[x] itermConstant: "const" req_int_terms: t1 ≡ t2 false: False implies:  Q not: ¬A top: Top uiff: uiff(P;Q) and: P ∧ Q int_nzero: -o true: True nequal: a ≠ b ∈  sq_type: SQType(T) guard: {T} prop: rneq: x ≠ y or: P ∨ Q iff: ⇐⇒ Q rev_implies:  Q less_than: a < b squash: T less_than': less_than'(a;b) rdiv: (x/y) i-member: r ∈ I rccint: [l, u] cand: c∧ B sq_stable: SqStable(P) rev_uimplies: rev_uimplies(P;Q) rge: x ≥ y rless: x < y sq_exists: x:{A| B[x]} nat_plus: + decidable: Dec(P) satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x]
Lemmas referenced :  rless-implies-rless real_term_polynomial itermSubtract_wf itermVar_wf int-to-real_wf real_term_value_const_lemma real_term_value_sub_lemma real_term_value_var_lemma req-iff-rsub-is-0 rsub_wf rless_functionality int-rdiv_wf subtype_base_sq int_subtype_base equal-wf-base true_wf nequal_wf radd_wf rdiv_wf rless-int rless_wf int-rmul_wf int-rdiv-req i-member_wf rccint_wf rleq_wf rabs_wf real_wf rmul_wf rmul_preserves_rless rinv_wf2 itermAdd_wf itermMultiply_wf itermConstant_wf real_term_value_add_lemma real_term_value_mul_lemma req_weakening rdiv_functionality radd_functionality int-rmul-req rmul-int req_transitivity rmul_functionality rmul-rinv3 rless-cases rless_transitivity2 rleq_weakening_rless sq_stable__rleq rabs-bounds rleq-implies-rleq equal_wf rleq_functionality_wrt_implies rleq_weakening_equal rsub_functionality_wrt_rleq req-int nat_plus_properties decidable__equal_int satisfiable-full-omega-tt intformnot_wf intformeq_wf int_formula_prop_not_lemma int_formula_prop_eq_lemma int_term_value_constant_lemma int_term_value_mul_lemma int_formula_prop_wf req_inversion rless_transitivity1 rleq_weakening rmul_preserves_rleq rminus_wf rleq_functionality rsub_functionality req_functionality rinv-of-rmul itermMinus_wf real_term_value_minus_lemma rminus_functionality rabs-difference-symmetry
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation isect_memberFormation cut introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality isectElimination independent_isectElimination natural_numberEquality hypothesis sqequalRule computeAll lambdaEquality int_eqEquality intEquality isect_memberEquality voidElimination voidEquality because_Cache productElimination dependent_set_memberEquality addLevel instantiate cumulativity equalityTransitivity equalitySymmetry independent_functionElimination baseClosed inrFormation independent_pairFormation imageMemberEquality productEquality multiplyEquality unionElimination inlFormation imageElimination setElimination rename dependent_pairFormation

Latex:
\mforall{}x,y,a,b:\mBbbR{}.
    (((x  \mmember{}  [(2  *  a  +  b)/3,  b])  \mwedge{}  (y  \mmember{}  [(2  *  a  +  b)/3,  b]))
          \mvee{}  ((x  \mmember{}  [a,  (a  +  2  *  b)/3])  \mwedge{}  (y  \mmember{}  [a,  (a  +  2  *  b)/3])))  supposing 
          (((x  \mmember{}  [a,  b])  \mwedge{}  (y  \mmember{}  [a,  b])  \mwedge{}  (|x  -  y|  \mleq{}  (b  -  a/r(6))))  and 
          (a  <  b))



Date html generated: 2017_10_03-AM-09_48_17
Last ObjectModification: 2017_07_28-AM-08_00_22

Theory : reals


Home Index