Nuprl Lemma : cantor-common-middle-third-lemma
∀x,y,a,b:ℝ.
  (((x ∈ [(2 * a + b)/3, b]) ∧ (y ∈ [(2 * a + b)/3, b]))
     ∨ ((x ∈ [a, (a + 2 * b)/3]) ∧ (y ∈ [a, (a + 2 * b)/3]))) supposing 
     (((x ∈ [a, b]) ∧ (y ∈ [a, b]) ∧ (|x - y| ≤ (b - a/r(6)))) and 
     (a < b))
Proof
Definitions occuring in Statement : 
rccint: [l, u]
, 
i-member: r ∈ I
, 
rdiv: (x/y)
, 
rleq: x ≤ y
, 
rless: x < y
, 
rabs: |x|
, 
int-rdiv: (a)/k1
, 
int-rmul: k1 * a
, 
rsub: x - y
, 
radd: a + b
, 
int-to-real: r(n)
, 
real: ℝ
, 
uimplies: b supposing a
, 
all: ∀x:A. B[x]
, 
or: P ∨ Q
, 
and: P ∧ Q
, 
natural_number: $n
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
uimplies: b supposing a
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
itermConstant: "const"
, 
req_int_terms: t1 ≡ t2
, 
false: False
, 
implies: P 
⇒ Q
, 
not: ¬A
, 
top: Top
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
int_nzero: ℤ-o
, 
true: True
, 
nequal: a ≠ b ∈ T 
, 
sq_type: SQType(T)
, 
guard: {T}
, 
prop: ℙ
, 
rneq: x ≠ y
, 
or: P ∨ Q
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
less_than: a < b
, 
squash: ↓T
, 
less_than': less_than'(a;b)
, 
rdiv: (x/y)
, 
i-member: r ∈ I
, 
rccint: [l, u]
, 
cand: A c∧ B
, 
sq_stable: SqStable(P)
, 
rev_uimplies: rev_uimplies(P;Q)
, 
rge: x ≥ y
, 
rless: x < y
, 
sq_exists: ∃x:{A| B[x]}
, 
nat_plus: ℕ+
, 
decidable: Dec(P)
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
Lemmas referenced : 
rless-implies-rless, 
real_term_polynomial, 
itermSubtract_wf, 
itermVar_wf, 
int-to-real_wf, 
real_term_value_const_lemma, 
real_term_value_sub_lemma, 
real_term_value_var_lemma, 
req-iff-rsub-is-0, 
rsub_wf, 
rless_functionality, 
int-rdiv_wf, 
subtype_base_sq, 
int_subtype_base, 
equal-wf-base, 
true_wf, 
nequal_wf, 
radd_wf, 
rdiv_wf, 
rless-int, 
rless_wf, 
int-rmul_wf, 
int-rdiv-req, 
i-member_wf, 
rccint_wf, 
rleq_wf, 
rabs_wf, 
real_wf, 
rmul_wf, 
rmul_preserves_rless, 
rinv_wf2, 
itermAdd_wf, 
itermMultiply_wf, 
itermConstant_wf, 
real_term_value_add_lemma, 
real_term_value_mul_lemma, 
req_weakening, 
rdiv_functionality, 
radd_functionality, 
int-rmul-req, 
rmul-int, 
req_transitivity, 
rmul_functionality, 
rmul-rinv3, 
rless-cases, 
rless_transitivity2, 
rleq_weakening_rless, 
sq_stable__rleq, 
rabs-bounds, 
rleq-implies-rleq, 
equal_wf, 
rleq_functionality_wrt_implies, 
rleq_weakening_equal, 
rsub_functionality_wrt_rleq, 
req-int, 
nat_plus_properties, 
decidable__equal_int, 
satisfiable-full-omega-tt, 
intformnot_wf, 
intformeq_wf, 
int_formula_prop_not_lemma, 
int_formula_prop_eq_lemma, 
int_term_value_constant_lemma, 
int_term_value_mul_lemma, 
int_formula_prop_wf, 
req_inversion, 
rless_transitivity1, 
rleq_weakening, 
rmul_preserves_rleq, 
rminus_wf, 
rleq_functionality, 
rsub_functionality, 
req_functionality, 
rinv-of-rmul, 
itermMinus_wf, 
real_term_value_minus_lemma, 
rminus_functionality, 
rabs-difference-symmetry
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
isect_memberFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
isectElimination, 
independent_isectElimination, 
natural_numberEquality, 
hypothesis, 
sqequalRule, 
computeAll, 
lambdaEquality, 
int_eqEquality, 
intEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
because_Cache, 
productElimination, 
dependent_set_memberEquality, 
addLevel, 
instantiate, 
cumulativity, 
equalityTransitivity, 
equalitySymmetry, 
independent_functionElimination, 
baseClosed, 
inrFormation, 
independent_pairFormation, 
imageMemberEquality, 
productEquality, 
multiplyEquality, 
unionElimination, 
inlFormation, 
imageElimination, 
setElimination, 
rename, 
dependent_pairFormation
Latex:
\mforall{}x,y,a,b:\mBbbR{}.
    (((x  \mmember{}  [(2  *  a  +  b)/3,  b])  \mwedge{}  (y  \mmember{}  [(2  *  a  +  b)/3,  b]))
          \mvee{}  ((x  \mmember{}  [a,  (a  +  2  *  b)/3])  \mwedge{}  (y  \mmember{}  [a,  (a  +  2  *  b)/3])))  supposing 
          (((x  \mmember{}  [a,  b])  \mwedge{}  (y  \mmember{}  [a,  b])  \mwedge{}  (|x  -  y|  \mleq{}  (b  -  a/r(6))))  and 
          (a  <  b))
Date html generated:
2017_10_03-AM-09_48_17
Last ObjectModification:
2017_07_28-AM-08_00_22
Theory : reals
Home
Index