Nuprl Lemma : concave-positive-nonzero-on

I:Interval. ∀f:I ⟶ℝ.
  ((∀x,y:ℝ.  ((x ∈ I)  (y ∈ I)  (x y)  (f[x] f[y])))
   (∀x:ℝ((x ∈ I)  (r0 < f[x])))
   concave-on(I;x.f[x])
   f[x]≠r0 for x ∈ I)


Proof




Definitions occuring in Statement :  concave-on: concave-on(I;x.f[x]) nonzero-on: f[x]≠r0 for x ∈ I rfun: I ⟶ℝ i-member: r ∈ I interval: Interval rless: x < y req: y int-to-real: r(n) real: so_apply: x[s] all: x:A. B[x] implies:  Q natural_number: $n
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q nonzero-on: f[x]≠r0 for x ∈ I member: t ∈ T prop: uall: [x:A]. B[x] so_lambda: λ2x.t[x] so_apply: x[s] label: ...$L... t rfun: I ⟶ℝ nat_plus: + uimplies: supposing a sq_stable: SqStable(P) and: P ∧ Q squash: T sq_exists: x:A [B[x]] cand: c∧ B guard: {T} subinterval: I ⊆  iff: ⇐⇒ Q uiff: uiff(P;Q) rev_uimplies: rev_uimplies(P;Q) stable: Stable{P} not: ¬A or: P ∨ Q false: False exists: x:A. B[x] concave-on: concave-on(I;x.f[x]) i-member: r ∈ I rccint: [l, u] rge: x ≥ y rbetween: x≤y≤z
Lemmas referenced :  set_wf nat_plus_wf icompact_wf i-approx_wf concave-on_wf i-member_wf real_wf all_wf rless_wf int-to-real_wf req_wf rfun_wf interval_wf i-approx-is-subinterval less_than_wf sq_stable__i-member left-endpoint_wf i-approx-finite icompact-endpoints right-endpoint_wf rmin_wf rleq_wf rabs_wf rmin_strict_ub rleq_weakening_rless rleq_functionality req_weakening rabs-of-nonneg stable__rleq false_wf or_wf not_wf minimal-double-negation-hyp-elim minimal-not-not-excluded-middle i-member-compact sq_stable__icompact rbetween-convex i-member-convex radd_wf rmul_wf rsub_wf rleq_functionality_wrt_implies rleq_weakening_equal rmin-lb-convex equal_wf not-rless rleq_antisymmetry icompact-endpoints-rleq rmin_functionality rleq_transitivity rmin-rleq
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesis sqequalRule lambdaEquality hypothesisEquality applyEquality setElimination rename dependent_set_memberEquality setEquality functionEquality natural_numberEquality because_Cache dependent_functionElimination independent_isectElimination independent_functionElimination productElimination imageMemberEquality baseClosed imageElimination dependent_set_memberFormation independent_pairFormation productEquality unionElimination voidElimination equalityTransitivity equalitySymmetry

Latex:
\mforall{}I:Interval.  \mforall{}f:I  {}\mrightarrow{}\mBbbR{}.
    ((\mforall{}x,y:\mBbbR{}.    ((x  \mmember{}  I)  {}\mRightarrow{}  (y  \mmember{}  I)  {}\mRightarrow{}  (x  =  y)  {}\mRightarrow{}  (f[x]  =  f[y])))
    {}\mRightarrow{}  (\mforall{}x:\mBbbR{}.  ((x  \mmember{}  I)  {}\mRightarrow{}  (r0  <  f[x])))
    {}\mRightarrow{}  concave-on(I;x.f[x])
    {}\mRightarrow{}  f[x]\mneq{}r0  for  x  \mmember{}  I)



Date html generated: 2018_05_22-PM-02_20_25
Last ObjectModification: 2017_10_20-PM-05_17_44

Theory : reals


Home Index