Nuprl Lemma : concave-positive-nonzero-on
∀I:Interval. ∀f:I ⟶ℝ.
  ((∀x,y:ℝ.  ((x ∈ I) 
⇒ (y ∈ I) 
⇒ (x = y) 
⇒ (f[x] = f[y])))
  
⇒ (∀x:ℝ. ((x ∈ I) 
⇒ (r0 < f[x])))
  
⇒ concave-on(I;x.f[x])
  
⇒ f[x]≠r0 for x ∈ I)
Proof
Definitions occuring in Statement : 
concave-on: concave-on(I;x.f[x])
, 
nonzero-on: f[x]≠r0 for x ∈ I
, 
rfun: I ⟶ℝ
, 
i-member: r ∈ I
, 
interval: Interval
, 
rless: x < y
, 
req: x = y
, 
int-to-real: r(n)
, 
real: ℝ
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
natural_number: $n
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
nonzero-on: f[x]≠r0 for x ∈ I
, 
member: t ∈ T
, 
prop: ℙ
, 
uall: ∀[x:A]. B[x]
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
label: ...$L... t
, 
rfun: I ⟶ℝ
, 
nat_plus: ℕ+
, 
uimplies: b supposing a
, 
sq_stable: SqStable(P)
, 
and: P ∧ Q
, 
squash: ↓T
, 
sq_exists: ∃x:A [B[x]]
, 
cand: A c∧ B
, 
guard: {T}
, 
subinterval: I ⊆ J 
, 
iff: P 
⇐⇒ Q
, 
uiff: uiff(P;Q)
, 
rev_uimplies: rev_uimplies(P;Q)
, 
stable: Stable{P}
, 
not: ¬A
, 
or: P ∨ Q
, 
false: False
, 
exists: ∃x:A. B[x]
, 
concave-on: concave-on(I;x.f[x])
, 
i-member: r ∈ I
, 
rccint: [l, u]
, 
rge: x ≥ y
, 
rbetween: x≤y≤z
Lemmas referenced : 
set_wf, 
nat_plus_wf, 
icompact_wf, 
i-approx_wf, 
concave-on_wf, 
i-member_wf, 
real_wf, 
all_wf, 
rless_wf, 
int-to-real_wf, 
req_wf, 
rfun_wf, 
interval_wf, 
i-approx-is-subinterval, 
less_than_wf, 
sq_stable__i-member, 
left-endpoint_wf, 
i-approx-finite, 
icompact-endpoints, 
right-endpoint_wf, 
rmin_wf, 
rleq_wf, 
rabs_wf, 
rmin_strict_ub, 
rleq_weakening_rless, 
rleq_functionality, 
req_weakening, 
rabs-of-nonneg, 
stable__rleq, 
false_wf, 
or_wf, 
not_wf, 
minimal-double-negation-hyp-elim, 
minimal-not-not-excluded-middle, 
i-member-compact, 
sq_stable__icompact, 
rbetween-convex, 
i-member-convex, 
radd_wf, 
rmul_wf, 
rsub_wf, 
rleq_functionality_wrt_implies, 
rleq_weakening_equal, 
rmin-lb-convex, 
equal_wf, 
not-rless, 
rleq_antisymmetry, 
icompact-endpoints-rleq, 
rmin_functionality, 
rleq_transitivity, 
rmin-rleq
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesis, 
sqequalRule, 
lambdaEquality, 
hypothesisEquality, 
applyEquality, 
setElimination, 
rename, 
dependent_set_memberEquality, 
setEquality, 
functionEquality, 
natural_numberEquality, 
because_Cache, 
dependent_functionElimination, 
independent_isectElimination, 
independent_functionElimination, 
productElimination, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
dependent_set_memberFormation, 
independent_pairFormation, 
productEquality, 
unionElimination, 
voidElimination, 
equalityTransitivity, 
equalitySymmetry
Latex:
\mforall{}I:Interval.  \mforall{}f:I  {}\mrightarrow{}\mBbbR{}.
    ((\mforall{}x,y:\mBbbR{}.    ((x  \mmember{}  I)  {}\mRightarrow{}  (y  \mmember{}  I)  {}\mRightarrow{}  (x  =  y)  {}\mRightarrow{}  (f[x]  =  f[y])))
    {}\mRightarrow{}  (\mforall{}x:\mBbbR{}.  ((x  \mmember{}  I)  {}\mRightarrow{}  (r0  <  f[x])))
    {}\mRightarrow{}  concave-on(I;x.f[x])
    {}\mRightarrow{}  f[x]\mneq{}r0  for  x  \mmember{}  I)
Date html generated:
2018_05_22-PM-02_20_25
Last ObjectModification:
2017_10_20-PM-05_17_44
Theory : reals
Home
Index