Nuprl Lemma : derivative-rnexp-function

I:Interval
  (iproper(I)
   (∀f,f':I ⟶ℝ.
        ((∀x,y:{x:ℝx ∈ I} .  ((x y)  (f'[x] f'[y])))
         d(f[x])/dx = λx.f'[x] on I
         (∀n:ℕ+d(f[x]^n)/dx = λx.(r(n) f[x]^n 1) f'[x] on I))))


Proof




Definitions occuring in Statement :  derivative: d(f[x])/dx = λz.g[z] on I rfun: I ⟶ℝ i-member: r ∈ I iproper: iproper(I) interval: Interval rnexp: x^k1 req: y rmul: b int-to-real: r(n) real: nat_plus: + so_apply: x[s] all: x:A. B[x] implies:  Q set: {x:A| B[x]}  subtract: m natural_number: $n
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q uall: [x:A]. B[x] member: t ∈ T nat_plus: + prop: so_lambda: λ2x.t[x] label: ...$L... t rfun: I ⟶ℝ nat: decidable: Dec(P) or: P ∨ Q uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False not: ¬A top: Top and: P ∧ Q so_apply: x[s] subtype_rel: A ⊆B rev_uimplies: rev_uimplies(P;Q) uiff: uiff(P;Q) r-ap: f(x) rfun-eq: rfun-eq(I;f;g) less_than': less_than'(a;b) le: A ≤ B subtract: m guard: {T} itermConstant: "const" req_int_terms: t1 ≡ t2 real_term_value: real_term_value(f;t) int_term_ind: int_term_ind itermSubtract: left (-) right itermMultiply: left (*) right itermVar: vvar true: True rev_implies:  Q iff: ⇐⇒ Q
Lemmas referenced :  nat_plus_properties derivative_wf rnexp_wf decidable__le satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf le_wf i-member_wf rmul_wf int-to-real_wf subtract_wf itermSubtract_wf int_term_value_subtract_lemma primrec-wf-nat-plus nat_plus_subtype_nat nat_plus_wf real_wf all_wf req_wf rfun_wf iproper_wf interval_wf rmul-one-both rmul-int rmul_functionality uiff_transitivity rpower-one req_functionality derivative_functionality set_wf req_weakening false_wf rnexp_zero_lemma derivative-mul rnexp_functionality continuous-implies-functional proper-continuous-is-continuous differentiable-continuous real_term_polynomial itermMultiply_wf req-iff-rsub-is-0 add-subtract-cancel radd_wf int_term_value_add_lemma itermAdd_wf rmul_comm less_than_wf le-add-cancel add-zero add-associates add_functionality_wrt_le add-commutes minus-one-mul-top zero-add minus-one-mul minus-add condition-implies-le less-iff-le not-lt-2 decidable__lt rnexp_step radd_functionality equal_wf rmul-ac req_transitivity rmul-assoc req_inversion rmul-distrib radd-int
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut thin rename introduction extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality hypothesis setElimination because_Cache sqequalRule lambdaEquality dependent_set_memberEquality dependent_functionElimination natural_numberEquality unionElimination independent_isectElimination dependent_pairFormation int_eqEquality intEquality isect_memberEquality voidElimination voidEquality independent_pairFormation computeAll applyEquality setEquality functionEquality productElimination independent_functionElimination multiplyEquality addEquality minusEquality equalitySymmetry equalityTransitivity

Latex:
\mforall{}I:Interval
    (iproper(I)
    {}\mRightarrow{}  (\mforall{}f,f':I  {}\mrightarrow{}\mBbbR{}.
                ((\mforall{}x,y:\{x:\mBbbR{}|  x  \mmember{}  I\}  .    ((x  =  y)  {}\mRightarrow{}  (f'[x]  =  f'[y])))
                {}\mRightarrow{}  d(f[x])/dx  =  \mlambda{}x.f'[x]  on  I
                {}\mRightarrow{}  (\mforall{}n:\mBbbN{}\msupplus{}.  d(f[x]\^{}n)/dx  =  \mlambda{}x.(r(n)  *  f[x]\^{}n  -  1)  *  f'[x]  on  I))))



Date html generated: 2017_10_03-PM-00_13_00
Last ObjectModification: 2017_07_28-AM-08_35_59

Theory : reals


Home Index