Nuprl Lemma : mdist-max-metric-mul-rleq
∀[n:ℕ]. ∀[x:ℝ^n]. ∀[c,c':ℝ].  (mdist(max-metric(n);c*x;c'*x) ≤ (|c - c'| * mdist(max-metric(n);x;λi.r0)))
Proof
Definitions occuring in Statement : 
max-metric: max-metric(n)
, 
real-vec-mul: a*X
, 
real-vec: ℝ^n
, 
mdist: mdist(d;x;y)
, 
rleq: x ≤ y
, 
rabs: |x|
, 
rsub: x - y
, 
rmul: a * b
, 
int-to-real: r(n)
, 
real: ℝ
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
lambda: λx.A[x]
, 
natural_number: $n
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
max-metric: max-metric(n)
, 
mdist: mdist(d;x;y)
, 
real-vec-mul: a*X
, 
member: t ∈ T
, 
real-vec: ℝ^n
, 
nat: ℕ
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
and: P ∧ Q
, 
le: A ≤ B
, 
sq_stable: SqStable(P)
, 
implies: P 
⇒ Q
, 
false: False
, 
ge: i ≥ j 
, 
uimplies: b supposing a
, 
not: ¬A
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
all: ∀x:A. B[x]
, 
top: Top
, 
prop: ℙ
, 
rleq: x ≤ y
, 
rnonneg: rnonneg(x)
, 
less_than': less_than'(a;b)
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
squash: ↓T
, 
subtype_rel: A ⊆r B
, 
less_than: a < b
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
uiff: uiff(P;Q)
, 
bfalse: ff
, 
sq_type: SQType(T)
, 
guard: {T}
, 
bnot: ¬bb
, 
ifthenelse: if b then t else f fi 
, 
assert: ↑b
, 
rev_implies: P 
⇐ Q
, 
iff: P 
⇐⇒ Q
, 
cand: A c∧ B
, 
rev_uimplies: rev_uimplies(P;Q)
, 
req_int_terms: t1 ≡ t2
Lemmas referenced : 
sq_stable__rleq, 
primrec_wf, 
real_wf, 
int-to-real_wf, 
rmax_wf, 
rabs_wf, 
rsub_wf, 
rmul_wf, 
int_seg_wf, 
nat_properties, 
full-omega-unsat, 
intformand_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
intformless_wf, 
istype-int, 
int_formula_prop_and_lemma, 
istype-void, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_wf, 
ge_wf, 
istype-less_than, 
le_witness_for_triv, 
primrec0_lemma, 
rmul-nonneg-case1, 
zero-rleq-rabs, 
rleq_weakening_equal, 
real-vec_wf, 
istype-le, 
subtract-1-ge-0, 
decidable__le, 
intformnot_wf, 
int_formula_prop_not_lemma, 
istype-nat, 
lt_int_wf, 
real-vec-subtype, 
subtract_wf, 
itermSubtract_wf, 
int_term_value_subtract_lemma, 
decidable__lt, 
int_seg_properties, 
rleq_wf, 
primrec-unroll, 
eqtt_to_assert, 
assert_of_lt_int, 
eqff_to_assert, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_wf, 
bool_subtype_base, 
assert-bnot, 
iff_weakening_uiff, 
assert_wf, 
less_than_wf, 
rmax_lb, 
rmax_ub, 
rleq_functionality, 
req_weakening, 
rmul-rmax, 
req_inversion, 
rabs-rmul, 
radd_wf, 
rminus_wf, 
itermMultiply_wf, 
itermAdd_wf, 
itermMinus_wf, 
rabs_functionality, 
req-iff-rsub-is-0, 
real_polynomial_null, 
real_term_value_sub_lemma, 
real_term_value_mul_lemma, 
real_term_value_var_lemma, 
real_term_value_add_lemma, 
real_term_value_minus_lemma, 
real_term_value_const_lemma
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
sqequalRule, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesis, 
hypothesisEquality, 
natural_numberEquality, 
lambdaEquality_alt, 
applyEquality, 
because_Cache, 
inhabitedIsType, 
universeIsType, 
setElimination, 
rename, 
productElimination, 
independent_functionElimination, 
intWeakElimination, 
lambdaFormation_alt, 
independent_isectElimination, 
approximateComputation, 
dependent_pairFormation_alt, 
int_eqEquality, 
dependent_functionElimination, 
isect_memberEquality_alt, 
voidElimination, 
independent_pairFormation, 
equalityTransitivity, 
equalitySymmetry, 
functionIsTypeImplies, 
dependent_set_memberEquality_alt, 
unionElimination, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
closedConclusion, 
productIsType, 
equalityIstype, 
equalityElimination, 
promote_hyp, 
instantiate, 
cumulativity, 
inlFormation_alt, 
inrFormation_alt
Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[x:\mBbbR{}\^{}n].  \mforall{}[c,c':\mBbbR{}].
    (mdist(max-metric(n);c*x;c'*x)  \mleq{}  (|c  -  c'|  *  mdist(max-metric(n);x;\mlambda{}i.r0)))
Date html generated:
2019_10_30-AM-08_40_05
Last ObjectModification:
2019_10_02-AM-11_04_48
Theory : reals
Home
Index