Nuprl Lemma : mdist-max-metric-mul-rleq

[n:ℕ]. ∀[x:ℝ^n]. ∀[c,c':ℝ].  (mdist(max-metric(n);c*x;c'*x) ≤ (|c c'| mdist(max-metric(n);x;λi.r0)))


Proof




Definitions occuring in Statement :  max-metric: max-metric(n) real-vec-mul: a*X real-vec: ^n mdist: mdist(d;x;y) rleq: x ≤ y rabs: |x| rsub: y rmul: b int-to-real: r(n) real: nat: uall: [x:A]. B[x] lambda: λx.A[x] natural_number: $n
Definitions unfolded in proof :  uall: [x:A]. B[x] max-metric: max-metric(n) mdist: mdist(d;x;y) real-vec-mul: a*X member: t ∈ T real-vec: ^n nat: int_seg: {i..j-} lelt: i ≤ j < k and: P ∧ Q le: A ≤ B sq_stable: SqStable(P) implies:  Q false: False ge: i ≥  uimplies: supposing a not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] all: x:A. B[x] top: Top prop: rleq: x ≤ y rnonneg: rnonneg(x) less_than': less_than'(a;b) decidable: Dec(P) or: P ∨ Q squash: T subtype_rel: A ⊆B less_than: a < b bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) bfalse: ff sq_type: SQType(T) guard: {T} bnot: ¬bb ifthenelse: if then else fi  assert: b rev_implies:  Q iff: ⇐⇒ Q cand: c∧ B rev_uimplies: rev_uimplies(P;Q) req_int_terms: t1 ≡ t2
Lemmas referenced :  sq_stable__rleq primrec_wf real_wf int-to-real_wf rmax_wf rabs_wf rsub_wf rmul_wf int_seg_wf nat_properties full-omega-unsat intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf istype-int int_formula_prop_and_lemma istype-void int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf istype-less_than le_witness_for_triv primrec0_lemma rmul-nonneg-case1 zero-rleq-rabs rleq_weakening_equal real-vec_wf istype-le subtract-1-ge-0 decidable__le intformnot_wf int_formula_prop_not_lemma istype-nat lt_int_wf real-vec-subtype subtract_wf itermSubtract_wf int_term_value_subtract_lemma decidable__lt int_seg_properties rleq_wf primrec-unroll eqtt_to_assert assert_of_lt_int eqff_to_assert bool_cases_sqequal subtype_base_sq bool_wf bool_subtype_base assert-bnot iff_weakening_uiff assert_wf less_than_wf rmax_lb rmax_ub rleq_functionality req_weakening rmul-rmax req_inversion rabs-rmul radd_wf rminus_wf itermMultiply_wf itermAdd_wf itermMinus_wf rabs_functionality req-iff-rsub-is-0 real_polynomial_null real_term_value_sub_lemma real_term_value_mul_lemma real_term_value_var_lemma real_term_value_add_lemma real_term_value_minus_lemma real_term_value_const_lemma
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt sqequalRule cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesis hypothesisEquality natural_numberEquality lambdaEquality_alt applyEquality because_Cache inhabitedIsType universeIsType setElimination rename productElimination independent_functionElimination intWeakElimination lambdaFormation_alt independent_isectElimination approximateComputation dependent_pairFormation_alt int_eqEquality dependent_functionElimination isect_memberEquality_alt voidElimination independent_pairFormation equalityTransitivity equalitySymmetry functionIsTypeImplies dependent_set_memberEquality_alt unionElimination imageMemberEquality baseClosed imageElimination closedConclusion productIsType equalityIstype equalityElimination promote_hyp instantiate cumulativity inlFormation_alt inrFormation_alt

Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[x:\mBbbR{}\^{}n].  \mforall{}[c,c':\mBbbR{}].
    (mdist(max-metric(n);c*x;c'*x)  \mleq{}  (|c  -  c'|  *  mdist(max-metric(n);x;\mlambda{}i.r0)))



Date html generated: 2019_10_30-AM-08_40_05
Last ObjectModification: 2019_10_02-AM-11_04_48

Theory : reals


Home Index