Nuprl Lemma : rv-between-simple
∀n:ℕ. ∀c,d:ℝ^n.  ((r0 < ||d||) ⇒ c - d-c-c + d)
Proof
Definitions occuring in Statement : 
rv-between: a-b-c, 
real-vec-norm: ||x||, 
real-vec-sub: X - Y, 
real-vec-add: X + Y, 
real-vec: ℝ^n, 
rless: x < y, 
int-to-real: r(n), 
nat: ℕ, 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
natural_number: $n
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
member: t ∈ T, 
prop: ℙ, 
uall: ∀[x:A]. B[x], 
real-vec-between: a-b-c, 
exists: ∃x:A. B[x], 
uimplies: b supposing a, 
rneq: x ≠ y, 
guard: {T}, 
or: P ∨ Q, 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
rev_implies: P ⇐ Q, 
less_than: a < b, 
squash: ↓T, 
less_than': less_than'(a;b), 
true: True, 
cand: A c∧ B, 
i-member: r ∈ I, 
rooint: (l, u), 
nat_plus: ℕ+, 
uiff: uiff(P;Q), 
rev_uimplies: rev_uimplies(P;Q), 
rsub: x - y, 
real-vec-add: X + Y, 
real-vec-mul: a*X, 
real-vec-sub: X - Y, 
req-vec: req-vec(n;x;y), 
nat: ℕ, 
real-vec: ℝ^n, 
subtype_rel: A ⊆r B, 
rv-between: a-b-c, 
real-vec-sep: a ≠ b, 
real-vec-dist: d(x;y), 
rge: x ≥ y
Lemmas referenced : 
rless_wf, 
int-to-real_wf, 
real-vec-norm_wf, 
real-vec_wf, 
nat_wf, 
rdiv_wf, 
rless-int, 
rless-int-fractions2, 
less_than_wf, 
rless-int-fractions3, 
i-member_wf, 
rooint_wf, 
req-vec_wf, 
real-vec-add_wf, 
real-vec-mul_wf, 
real-vec-sub_wf, 
rsub_wf, 
rmul_preserves_req, 
req_wf, 
rmul_wf, 
radd_wf, 
rminus_wf, 
req_weakening, 
uiff_transitivity, 
req_functionality, 
rmul-rdiv-cancel2, 
req_transitivity, 
rmul-distrib, 
radd_functionality, 
rmul_over_rminus, 
rmul-one-both, 
rminus_functionality, 
rmul_comm, 
rmul-rdiv-cancel, 
uiff_transitivity3, 
squash_wf, 
true_wf, 
real_wf, 
rminus-int, 
radd-int, 
req-vec_functionality, 
req-vec_weakening, 
real-vec-add_functionality, 
real-vec-mul_functionality, 
equal_wf, 
int_seg_wf, 
req_inversion, 
radd-assoc, 
radd-ac, 
radd_comm, 
radd-rminus-both, 
radd-zero-both, 
rmul-distrib2, 
rmul_functionality, 
rmul-identity1, 
rmul-assoc, 
iff_weakening_equal, 
rmul-ac, 
real-vec-dist-between, 
real-vec-dist_wf, 
rleq_wf, 
rless_functionality, 
real-vec-dist-symmetry, 
rminus-radd, 
rminus-as-rmul, 
rmul-zero-both, 
rminus-rminus, 
real-vec-norm_functionality, 
real-vec-norm-nonneg, 
trivial-rless-radd, 
rless_functionality_wrt_implies, 
rleq_weakening_equal, 
radd_functionality_wrt_rleq
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
natural_numberEquality, 
hypothesis, 
hypothesisEquality, 
dependent_pairFormation, 
independent_isectElimination, 
sqequalRule, 
inrFormation, 
dependent_functionElimination, 
because_Cache, 
productElimination, 
independent_functionElimination, 
independent_pairFormation, 
imageMemberEquality, 
baseClosed, 
dependent_set_memberEquality, 
multiplyEquality, 
productEquality, 
minusEquality, 
addEquality, 
applyEquality, 
lambdaEquality, 
imageElimination, 
equalityTransitivity, 
equalitySymmetry, 
setElimination, 
rename, 
universeEquality, 
setEquality
Latex:
\mforall{}n:\mBbbN{}.  \mforall{}c,d:\mBbbR{}\^{}n.    ((r0  <  ||d||)  {}\mRightarrow{}  c  -  d-c-c  +  d)
Date html generated:
2017_10_03-AM-11_13_22
Last ObjectModification:
2017_07_28-AM-08_24_08
Theory : reals
Home
Index