Nuprl Lemma : rv-between-simple

n:ℕ. ∀c,d:ℝ^n.  ((r0 < ||d||)  d-c-c d)


Proof




Definitions occuring in Statement :  rv-between: a-b-c real-vec-norm: ||x|| real-vec-sub: Y real-vec-add: Y real-vec: ^n rless: x < y int-to-real: r(n) nat: all: x:A. B[x] implies:  Q natural_number: $n
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T prop: uall: [x:A]. B[x] real-vec-between: a-b-c exists: x:A. B[x] uimplies: supposing a rneq: x ≠ y guard: {T} or: P ∨ Q iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q less_than: a < b squash: T less_than': less_than'(a;b) true: True cand: c∧ B i-member: r ∈ I rooint: (l, u) nat_plus: + uiff: uiff(P;Q) rev_uimplies: rev_uimplies(P;Q) rsub: y real-vec-add: Y real-vec-mul: a*X real-vec-sub: Y req-vec: req-vec(n;x;y) nat: real-vec: ^n subtype_rel: A ⊆B rv-between: a-b-c real-vec-sep: a ≠ b real-vec-dist: d(x;y) rge: x ≥ y
Lemmas referenced :  rless_wf int-to-real_wf real-vec-norm_wf real-vec_wf nat_wf rdiv_wf rless-int rless-int-fractions2 less_than_wf rless-int-fractions3 i-member_wf rooint_wf req-vec_wf real-vec-add_wf real-vec-mul_wf real-vec-sub_wf rsub_wf rmul_preserves_req req_wf rmul_wf radd_wf rminus_wf req_weakening uiff_transitivity req_functionality rmul-rdiv-cancel2 req_transitivity rmul-distrib radd_functionality rmul_over_rminus rmul-one-both rminus_functionality rmul_comm rmul-rdiv-cancel uiff_transitivity3 squash_wf true_wf real_wf rminus-int radd-int req-vec_functionality req-vec_weakening real-vec-add_functionality real-vec-mul_functionality equal_wf int_seg_wf req_inversion radd-assoc radd-ac radd_comm radd-rminus-both radd-zero-both rmul-distrib2 rmul_functionality rmul-identity1 rmul-assoc iff_weakening_equal rmul-ac real-vec-dist-between real-vec-dist_wf rleq_wf rless_functionality real-vec-dist-symmetry rminus-radd rminus-as-rmul rmul-zero-both rminus-rminus real-vec-norm_functionality real-vec-norm-nonneg trivial-rless-radd rless_functionality_wrt_implies rleq_weakening_equal radd_functionality_wrt_rleq
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin natural_numberEquality hypothesis hypothesisEquality dependent_pairFormation independent_isectElimination sqequalRule inrFormation dependent_functionElimination because_Cache productElimination independent_functionElimination independent_pairFormation imageMemberEquality baseClosed dependent_set_memberEquality multiplyEquality productEquality minusEquality addEquality applyEquality lambdaEquality imageElimination equalityTransitivity equalitySymmetry setElimination rename universeEquality setEquality

Latex:
\mforall{}n:\mBbbN{}.  \mforall{}c,d:\mBbbR{}\^{}n.    ((r0  <  ||d||)  {}\mRightarrow{}  c  -  d-c-c  +  d)



Date html generated: 2017_10_03-AM-11_13_22
Last ObjectModification: 2017_07_28-AM-08_24_08

Theory : reals


Home Index