Nuprl Lemma : rv-between-vec-mul
∀n:ℕ. ∀a,b,c:ℝ. ∀z:ℝ^n.  ((r0 < ||z||) ⇒ (a*z-b*z-c*z ⇐⇒ ((a < b) ∧ (b < c)) ∨ ((c < b) ∧ (b < a))))
Proof
Definitions occuring in Statement : 
rv-between: a-b-c, 
real-vec-norm: ||x||, 
real-vec-mul: a*X, 
real-vec: ℝ^n, 
rless: x < y, 
int-to-real: r(n), 
real: ℝ, 
nat: ℕ, 
all: ∀x:A. B[x], 
iff: P ⇐⇒ Q, 
implies: P ⇒ Q, 
or: P ∨ Q, 
and: P ∧ Q, 
natural_number: $n
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
member: t ∈ T, 
uall: ∀[x:A]. B[x], 
prop: ℙ, 
rev_implies: P ⇐ Q, 
or: P ∨ Q, 
rv-between: a-b-c, 
real-vec-between: a-b-c, 
exists: ∃x:A. B[x], 
real-vec-sep: a ≠ b, 
real-vec-dist: d(x;y), 
real-vec-mul: a*X, 
real-vec-sub: X - Y, 
req-vec: req-vec(n;x;y), 
nat: ℕ, 
real-vec: ℝ^n, 
int_seg: {i..j-}, 
lelt: i ≤ j < k, 
le: A ≤ B, 
uiff: uiff(P;Q), 
uimplies: b supposing a, 
req_int_terms: t1 ≡ t2, 
false: False, 
not: ¬A, 
top: Top, 
real-vec-add: X + Y, 
rev_uimplies: rev_uimplies(P;Q), 
rneq: x ≠ y, 
cand: A c∧ B, 
guard: {T}, 
i-member: r ∈ I, 
rooint: (l, u), 
rdiv: (x/y), 
rat_term_to_real: rat_term_to_real(f;t), 
rtermAdd: left "+" right, 
rat_term_ind: rat_term_ind, 
rtermMultiply: left "*" right, 
rtermDivide: num "/" denom, 
rtermVar: rtermVar(var), 
rtermSubtract: left "-" right, 
rtermConstant: "const", 
pi1: fst(t), 
true: True, 
pi2: snd(t)
Lemmas referenced : 
rv-between_wf, 
real-vec-mul_wf, 
rless_wf, 
int-to-real_wf, 
real-vec-norm_wf, 
real-vec_wf, 
real_wf, 
istype-nat, 
int_seg_wf, 
rsub_wf, 
rmul_wf, 
itermSubtract_wf, 
itermMultiply_wf, 
itermVar_wf, 
req-iff-rsub-is-0, 
real-vec-sub_wf, 
rabs_wf, 
real_polynomial_null, 
istype-int, 
real_term_value_sub_lemma, 
istype-void, 
real_term_value_mul_lemma, 
real_term_value_var_lemma, 
real_term_value_const_lemma, 
rless_functionality, 
req_weakening, 
real-vec-norm_functionality, 
real-vec-norm-mul, 
real-vec-norm-positive-iff, 
rmul_preserves_req, 
radd_wf, 
itermAdd_wf, 
itermConstant_wf, 
itermMinus_wf, 
rminus_wf, 
req-implies-req, 
req_functionality, 
real_term_value_add_lemma, 
real_term_value_minus_lemma, 
rmul-is-positive, 
rabs-positive-iff, 
radd-preserves-rless, 
rless_transitivity2, 
rleq_weakening_rless, 
rless_irreflexivity, 
rmul_preserves_rless, 
rdiv_wf, 
i-member_wf, 
rooint_wf, 
req-vec_wf, 
real-vec-add_wf, 
member_rooint_lemma, 
rinv_wf2, 
rless-implies-rless, 
req_transitivity, 
radd_functionality, 
rmul-rinv3, 
rminus_functionality, 
assert-rat-term-eq2, 
rtermMultiply_wf, 
rtermVar_wf, 
rtermAdd_wf, 
rtermDivide_wf, 
rtermSubtract_wf, 
rtermConstant_wf, 
real-vec-between-symmetry, 
radd-preserves-rleq, 
rabs-difference-symmetry, 
rabs-of-nonneg, 
rleq_functionality
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
independent_pairFormation, 
universeIsType, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
sqequalRule, 
unionIsType, 
productIsType, 
natural_numberEquality, 
inhabitedIsType, 
productElimination, 
setElimination, 
rename, 
applyEquality, 
because_Cache, 
independent_isectElimination, 
dependent_functionElimination, 
approximateComputation, 
lambdaEquality_alt, 
int_eqEquality, 
isect_memberEquality_alt, 
voidElimination, 
independent_functionElimination, 
unionElimination, 
inrFormation_alt, 
inlFormation_alt, 
promote_hyp, 
dependent_pairFormation_alt
Latex:
\mforall{}n:\mBbbN{}.  \mforall{}a,b,c:\mBbbR{}.  \mforall{}z:\mBbbR{}\^{}n.
    ((r0  <  ||z||)  {}\mRightarrow{}  (a*z-b*z-c*z  \mLeftarrow{}{}\mRightarrow{}  ((a  <  b)  \mwedge{}  (b  <  c))  \mvee{}  ((c  <  b)  \mwedge{}  (b  <  a))))
Date html generated:
2019_10_30-AM-08_49_02
Last ObjectModification:
2019_04_02-PM-04_35_54
Theory : reals
Home
Index